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Abstract: In this article we will discuss the Egelstaff-Schofield line shapes, as used in Raman spectroscopy, and their fit by means of q-Gaussian 

Tsallis functions.  q-Gaussians are probability distributions having their origin in the framework of Tsallis statistics. A continuous real parameter 
q is characterizing them so that, in the range 1 < q < 3, q-functions pass from the usual Gaussian form, for q close to 1, to that of a heavy tailed 

distribution, at q close to 3. The value q=2 corresponds to the Cauchy-Lorentzian distribution. This behavior allows the q-Gaussian function to 

properly mimicking the Egelstaff-Schofield line shape, which has been introduced to fit the bands of first-order Raman scattering in ionic liquids.  

This line shape is based on a modified Bessel function of the second kind. Moreover, since the Fourier transform of the Egelstaff-Schofield line 

shape is given by a simple analytical expression, we can use this expression as an easy substitute for the Fourier transform of the q-Gaussian 

function. 
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1. Introduction 

q-Gaussians are probability distributions having their 

origin in the framework of Tsallis statistics (Tsallis, 

1988, Hanel et al., 2009). The relevant functions of 

Tsallis statistics are the generalized forms of logarithm 

and exponential functions (see for instance the 

discussion in Sparavigna, 2022); a continuous real 

parameter q is characterizing them and when it is 

going to 1, the q-functions become the usual logarithm 

and exponential functions. Regarding the q-Gaussian 

function, in the range 1 < q < 3 we are passing from 

the Gaussian distribution, for q close to 1, to a heavy 

tailed distribution for q close to 3. The value q=2, 

(Naudts, 2009), corresponds exactly to the Cauchy 

distribution, also known in physics as the Lorentzian 

distribution. A change of the q parameter is therefore 

allowing the q-Gaussian to span the behavior from 

Gaussian to Lorentzian distribution. The q-Gaussian is 

therefore an interesting function for rendering the 

spectral line shape.  

 

In a previous article (Sparavigna, 2023), we have 

considered the application of q-Gaussian Tsallis line 

shape to the analysis of Raman spectra. Usually 

Lorentzian, Gaussian and Voigt profiles are the most 

commonly used line shapes for modelling Raman 

spectral bands (see Ferrari and Robertson, 2000, 2004, 

Ferrari, 2007, Meier, 2005, Naylor et al., 1995, and 

literature given in Sparavigna, 2023). We have seen 

that the q-Gaussian is able to fit Voigt line shape, and 

therefore it can be eligible as substitute in any 

numerical analysis obtained by means of the above-

mentioned functions. We have also reported the role 

of q-Gaussians in EPR spectroscopy (Howarth et al., 

2003). Actually, in Howarth et al., 2003, a "Tsallis 

lineshape function" has been proposed for describing 

electron paramagnetic resonance spectra, "and 

possibly nuclear magnetic resonance (NMR) spectra 

as well". In the article by Howarth et al., the q-

Gaussian is not mentioned in this manner, but as 

"Tsallis lineshape".  

 

Here we show that the q-Gaussian function is properly 

mimicking the Egelstaff-Schofield line shape, which 

has been introduced to fit the bands of first-order 

Raman scattering in ionic liquids.  This line shape is 

based on a modified Bessel function of the second 

kind. Since the Fourier transform of the Egelstaff-

Schofield line shape is given by an analytical 

expression, we can use this transform for the q-

Gaussian too (the specific Fourier transform of q-

Gaussian function has been calculated by Rodrigues 

and Giraldi, 2016). 

 

 
Fig. 1: q-Gaussian functions, for different q indices, from 

1.1 (quasi Gaussian) to 2.9 (over-Lorentzian).The blue 

curve is the Lorentzian line shape. 
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2. The q-Gaussians 

Before giving the q-function expression, it is 

necessary to stress that the term "q-Gaussian" is 

regarding the deformation of the Gaussian probability 

distribution function according to Tsallis generalized 

statistics. It is not a function of the "q-calculus", that is 

the quantum calculus (about q-calculus, Sparavigna, 

2021). As given by Umarov et al., 2008, the q-

Gaussian is: 

   𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2)    (1),  

where 𝑒𝑞(. )  is the q-exponential function and  𝐶  a 

constant based on  𝛤  function.  In the exponent, in the 

discussion proposed here, we use  𝛽 = 4 𝛾2⁄ ,  where  

𝛾  is the parameter of Lorentzian curves. The q-

exponential has the expression: 

   𝑒𝑥𝑝𝑞(𝑢) = [1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄      (2). 

Plots in the Figure 1 (see also Figure 2 in Sparavigna, 

2023, 10.18483/ijSci.2671) are showing the behaviour 

of q-Gaussians. 

 

3. The Egelstaff-Schofield model 

In Sparavigna, 2023, we have considered the Lorentz 

model of absorption and emission of light, leading to 

the Lorentzian profile of spectral lines. Due to Doppler 

and instrumentation broadening, the profile assumes a 

Voigt shape (Meier, 2005). We have also seen that q-

Gaussian functions are fitting the Voigt functions, and 

therefore can be interesting alternatives for numerical 

analyses of Raman bands.  

 

Let us now consider another approach to the fit of 

Raman spectra, based on Egelstaff-Schofield line 

shapes. The use of these lines had been proposed by 

Bunten et al., 1984, for the study of ionic liquids. The 

researchers assumed that the first-order Raman 

scattering was coming from large currents and that the 

widths of the lines had been depending "on the 

disordering motions in the melt which will range from 

Brownian at short times to diffusive (conductive) at 

long times" (Bunten et al., 1984). For molten salts, the 

light scattering has a timescale which is including both 

processes "and the form of the damping must range 

from Gaussian at short times to exponential at long 

times" (Bunten et al., 1984). The researchers had 

therefore used the proposal by Egelstaff and Schofield 

(1962) of the following time correlation function: 

𝐺(𝑡) = 𝑒𝑥𝑝{−[(𝑡2 + 𝜏1
2)1 2⁄ − 𝜏1] 𝜏2⁄ }  (3) 

This function becomes a Gaussian for  𝑡 ≪ 𝜏1,  and an 

exponential for  𝑡 ≫ 𝜏1. Moreover, it is possessing an 

analytically tractable Fourier transform. In (3) we can 

find two different relaxation times. 

 

The Egelstaff and Schofield model was also discussed 

in Kirillov, 2004. Section 2.2 of Kirillov's article 

provides the existing models for the vibrational 

relaxation and therefore for the vibrational 

spectroscopy (Raman spectroscopy). The first model 

addressed is the Kubo-Rothschild one, about 

vibrational dephasing according to the Kubo time 

correlation function (TCF). Let us introduce  𝜏𝜔 as the 

"characteristic time of the frequency modulation 

process (perturbation correlation time)" (Kirillov, 

2004). When  𝜏𝜔 → ∞,  the Kubo TCF  "tends to be 

Gaussian and predicts the Gaussian form of the entire 

vibrational line" (Kirillov, 2004).  In the other extreme 

with  𝜏𝜔 → 0, we have the Lorentzian profile. For 

finite relaxation time, the line is Lorentzian in its 

central part. Consequently, the Kubo-type TCF 

corresponds to a line which "is characterized by a 

Lorentzian central part and Gaussian wings” (Kirillov, 

2004). 

 

The other two mentioned models are the Rothschild 

Perrot Guillaume model and the Burshtein Fedorenko 

Pusep model. Of these models, we find in the Figure 1 

given by Kirillov, the TCFs  in reduced coordinates. 

For the following Figure 2, it is observed that different 

TCFs are producing "very unlike line profiles". The 

Kubo TCF corresponds to vibrational lines whose 

profiles vary from Gaussian to Lorentzian. The 

Rothschild Perrot Guillaume TCF gives lines that 

Kirillov defines of over-Gaussian form. The lines "are 

less sharp than Gaussian in their central part, and much 

faster fall to zero in the wings" (Kirillov, 2004). The 

Burshtein Fedorenko Pusep TCF has instead an over-

Lorentzian line profile, sharper than true Lorentzian in 

the kernel and broader in the wings (Kirillov, 2004). 

 

After discussing the above-mentioned models, 

Kirillov considers Egelstaff and Schofield model. In 

his work of 1999, about the time-correlation functions 

obtained from a band-shape fit without involving any 

Fourier transform, Kirillov proposed "to model real 

line profiles intermediate between Lorentzian and 

Gaussian by an analytical function, which has an 

analytical counterpart in the time domain" (Kirillov, 

2004). The model TCF is precisely the Egelstaff-

Schofield  𝐺(𝑡)  in Eq.3. The corresponding line shape 

is: 

𝐼(𝑣) = 𝐶  𝑒𝑥𝑝(𝜏1 𝜏2⁄ )(𝜏1
2 𝜏2⁄ ) 𝐾1 (𝑥) 𝑥⁄     (4) 

𝑥 = 𝜏1[4𝜋2𝑐2(𝑣 − 𝑣0)2 + 1 𝜏2
2⁄ ]1 2⁄     (5) 

𝐾1(𝑥)  is the modified Bessel function of the second 

kind, v0 is the peak wavenumber. C  is a proper 

dimensioned constant.  The Eq.(4) given above is also 

the line shape given by Eq.22 in Kirillov, 2004. In this 

equation we can find two relaxation times:  

considering their values "as empirical parameters, one 

can completely reproduce any kind of TCF described 

by the Kubo,  Rothschild-Perrot-Guillaume, or 

Burshtein theory" (Kirillov, 2004). 

 

Let us write (4) and (5) in the following form for 

comparison with q-Gaussian functions:  

𝐼(𝑥) = 𝐶𝐾1 (𝑦) 𝑦⁄    ;   𝑦 = 𝐴[𝐵𝑥2 + 1]    (6) 

Here, in the following Figure 2, the behavior of (6) is 

given according to values of A and B. Since the line 

shape is symmetric, only the right part of it is 

proposed. In the Figure 3, the same curves given in 

Fig.2 are compared with the q-Gaussians.  
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Fig. 2. Line profiles corresponding to Eq.6, for three different choices of parameter A, with B fixed.  Abscissa is given in half width at the half-

height (HWHH) units. At the line wings, the profile with A=15 is the lower one, that with A=1/15 is located higher. At the central part (kernel) of 
the line (right panel) the order of lines is opposite. However, they are rather close.  

 

 
Fig. 3. The line profiles of the Fig.2 are here given in red. The best fit by means of q-Gaussian functions is given in green. The values of q and  β  

are reported in the panels.  Abscissa is given in half width at the half-height (HWHH) units. The q-Gaussian line corresponding to profile with 

A=15 has a q value indicating a Gaussian nature; the q-function corresponding to A=1/15 has a q index indicating a Lorentzian value.   

 

 
Fig. 4. The panels are proposing the fit by means of q-Gaussian functions, characterized by a Gaussian behavior (in red the lines from Eq.(6) and 

in green q-Gaussian best fits). The values of q and β  are reported in the panels.  Abscissa is given in half width at the half-height (HWHH) units. 

Note that we are changing the value of A. The corresponding q-Gaussian function has values of q and  β changing accordingly. 

 

4. Conclusion 

In this article we have considered the Egelstaff-

Schofield line shape, as used in Raman spectroscopy 

and discussed by Kirillov (1999, 2004). We have 

proposed its fit by means of q-Gaussian Tsallis 

functions.  According to the examples proposed above, 

the q-Gaussian function is properly mimicking the 

Egelstaff-Schofield line shape. Let us stress that this 

profile has been introduced to fit the bands of first-

order Raman scattering in ionic liquids.  Since the 

Fourier transform of the Egelstaff-Schofield line shape 

(4),(5) is given by an analytical simple expression (3), 

we can use this expression in the evaluation  of the 

Fourier transform of the q-Gaussian function. That is, 

the q-Gaussian function can be fitted by means of the 

function given in Eq.(6). Of Eq.(6), the Fourier 

transform is available analytically, according to 

Eq.(3). The expression (3) is therefore turning into a 
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good substitute of the Fourier transform of the q-

Gaussian, which has been calculated by Rodrigues and 

Giraldi, 2016. 
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