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Abstract:  This paper addresses the issue of locating and determining the area of supply of various cogeneration energy 
plants, based on forest biomass. Two models are proposed, binary and mixed programming, depending on whether or not to 

allow the intersection between supply areas. Each model computes the ideal places to install biomass plants and their 

respective supply areas of raw material, since the latter are handled implicitly by the decision variables. We also propose 

two solution strategies depending on the size of the problem: Branch and cut algorithm for problems of medium size and 

heuristics associated with a genetic algorithm for large problems. We also develop software that automates the construction 

of the appropriate model, based on information provided by the user, delivering the optimal locations together with supply 

areas for the number and type of plants desired. 
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Introduction 

Alternative management options for energy production, 
which is also sustainable, are the combined heat and 

power (CHP) plants based on forest biomass. Plants 

based on biomass forestry transform this material into 

heat energy and then electricity. It is imperative 

optimality in the location of each plant and in the 

identification of resource areas, defined as part of the 

region where the plant extracts the needed biomass. The 

optimality in the location of plants is strongly linked to 

the costs of sale, processing, and transportation of 

biomass within the region. 
We develop an automatic methodology to find a 

combination of locations, feasible in the region, for 

installation of biomass plants, whether or not having 

common supply areas, and which are profitable for the 

investors. The model we propose assumes as data only all 

possible locations and select at the same time the optimal 

location and the corresponding supply areas. The idea 

was inspired by the classical models "Uncapacitated 

Facility Location" (UFL) and "Set Covering", (Wolsey, 

1998). 

The structure of this paper is as follows: Section 2 

deals with background research, addressing the problem 
description, the detailed of what we call strong and weak 

requirements, and goals. Section 3 explains the binary 

and mixed programming models. Section 4 discusses the 

implementation of the model, which takes place in two 
ways: with a mixed programming solver and a heuristic 

approach. In Section 5, we describe the heuristic method 

for the problem and implementation of binary mixed 

model GUROBI Section 6 discusses some of the 

computational results obtained in experiments with real 

data. Finally, Section 7 presents the conclusions of this 

study. 

State Of Art 

Since 1988, the model "facility location" was introduced, 
which focuses on the location of plants using an abstract 

mathematical modeling concept. (Guerrero and Carrazo, 

1998) show an application of the model to the installation 

and expansion of biomass plants based on olive, which 

imposes as data the supply area of a plant. In the present 

study we also used the "facility location" type model, but 

it is addressed by assuming a non determined supply area 

and allowing the intersection of the maximal areas of 
supply for the plants, that is, competition between them. 

The objective function of (Guerrero and Carrazo, 1998) is 

a facility location type without constraints. Our model 

provides an alternative objective function, where an 

extraction area exceeding 25 km is considered and where 

it is proportional to the transportation costs of each cell of 

biomass. This is determined by the Euclidean distance 

from the cell to the plant. A different treatment of plant 

location, when there is competition for resources, can 
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also be seen in the work of (Panichelli and Gnansounou, 

2008). 

The application of satellite technology (GIS) is an 

innovation in the estimation of biomass availability as 

reflected in the work of (Xun Shi and Elmore, 2008) 

Bernetti et al. (2004), (Krukanont and Prasertsan, 2004), 

and (Pontt, 2005). We find a large number of publications 

that use the facility location model to determine the 

location of a single plant, for example, Esteban et al. 
(2000),Graham et al. (2000) and Voivontas et al. (2001), 

but was hardly worked on the location of various plants. 

The location of biomass plants based on wood waste 

resembles the problem of locating forest plants (Troncoso 

and Garrido, 2001) and our approach is also useful for 

this problem. 

 

Research Background 

Problem Description 

To determine the optimal plant locations we will assume 

that there is enough information about the region, by 

means of geographical and/or statistical studies, geo-
referenced using satellite technology and other means. 

The information is stored in data files and each of these 

files we shall call "information layer". Therefore, in what 

follows we shall assume that the total region is divided 

into elements of approximately equal area (eg.  km  
rectangles) and refer to each element of this division as a 

"cell". All layers or data files have the same size and each 

contain a particular information in all cells. The different 

data files, which is assumed available, are detailed below: 

• Biomass: A file containing an estimate of the 
usable amount of biomass in each cell in the 

region. 

• Biomass type: Indicating the tree species found 

in each cell, classifying it by heat capacity. 

• Roads: Indicating whether each cell contains a 

(part of) road of total region. 

• Distance to nearest road: Indicating how far 
away each cell is from the nearest road. 

• Distance to nearest electric connection: 

Indicates how far each cell is from the nearest 

connection point to the electric network. 

• Elevation: Shows the elevation average on each 
of the cells. 

• Constraints: Lists the prohibition of locating a 

plant or using biomass in the cells of the region. 

These sectors may be associated with rivers or 

lakes, indigenous communities, protected forests 
and national parks, among others.  

The candidate sites for locating biomass plants are 

assumed explicitly designated by the planner. They are 

scattered around the region and are associated with each 

cell, thus constituting a new layer: 

• Feasible locations: Cells shall be encoded, 

identifying those potential sites of localization.  

Obviously these points are subject to restrictions imposed 

by the layer of constraints. The candidate sites correspond 
to particular requirements of the planner. This provides 

several scenarios that can be formulated. For example, 

choosing only locations: 

- Contained in a certain part of the region, 

- Close to roads and highways, 

- Near industries or towns, 

- Near electrical connections 

- With slope less than  degrees 

For the formulation of mixed programming model, we 
need a new concept. So far we have referred to the 

"Supply Area" of a plant (denoted ) and now we 

specify its definition as a set of cells in the biomass layer 

which serve the necessary biomass to operate the plant 

during the study period. The "maximum supply area" 

( ) shall be defined as the set of cells in the layer of 
biomass, where the transportation to the plant of the 

amount of biomass available is economically viable. One 

way to calculate the  is to establish a maximum 

radius , i.e. the maximum length allowed in the 

transportation of biomass from cells to the plant. Note 

that the feasible location  are calculated a priory 

and they are considered data for the model. The  of 

each plant will almost always be a subset of the , 

but they are unknown and will be determined by solving 

the model. 

The problem of establishing the  of each plant is 
dictated by two approaches: the first allows the 

intersection of the  of each plant and the second 

strictly prohibits the intersection of these. This is why we 

develop two models. 

User Requirements 

The following describes the requirements imposed to the 

problem of choosing optimal sites and supply area for 

each plant. The requirements are categorized into two 
groups: strong and soft. Strong requirements must be met 

mandatory and soft requirements are managed externally 

by the programmer and represent desirable conditions, 

but not mandatory for the choice of installation sites. 

Strong Requirements 

1. The amount of biomass available in the  

should be enough to keep operating the plant (of 
any kind) during the entire period. 

2. The  of two or more plants may (or may not) 
intersect, but the biomass removed as a whole 

must not exceed the amount available in each cell. 

This particular restriction gives rise to two 

models, one that tolerates other intersections and 

another one not allowing it. 

3. In a cell of the feasible locations layer can be 
installed only one particular type of plant size and 

technology. 
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4. It is necessary to install at least a minimum 
number and at most, a maximum number of plants 

of each type.  

The choice of places to install the plants would be done: 

1. trying to minimize transportation costs, 

2. giving preference to locations near concentrations 
of biomass, 

3. priorizing the locations near consumer 
communities, 

4. looking for sites closer to the electrical 

interconnection system, 

5. trying to be located on the sides of roads, 

6. causing the least harm to the environment, 

7. looking for an investment with lower taxes.  

Note that weak requirements go side by side with the 

objectives of the investors, and they cannot be met 

simultaneously. So in practice they must choose, add and 

/ or remove soft requirements. The soft requirements are 

involved in the definition of the objective function, which 

is constructed by calculating the Net Present Value 

( ) for a given set of locations. This economic 

indicator is detailed below and the optimal solution 

(maximum) obtained using it, produces (theoretically) the 

most profitable investment to carry out the project with 

the resulting locations. The next section details the 

models proposed to address the described problem. 

Model Description 

Objective Function 

To establish a model that reflects reality as best as 

possible, we introduce as objective function the economic 

indicator  (Net Present Value). This is a 
measurement tool to estimate how profitable is to install a 

plant in any given location. To calculate the , 

information on its main components is required, which 

are described in detail below: 

Initial Investment 

• Investment in plant technology. 

• Storage Investment. 

• Investment in electricity network connection. 

• Investment thermal network connection.  

Revenues 
Revenues can be classified into: 

• Sales of electricity. 

• Sales of thermal energy.  

Expenses 
Expenses can be classified into: 

• Costs relating to biomass, such as: 

Purchase cost of biomass. 

Cost of collection. 

Shipping cost. 

Cost of storage at the plant. 

Cost of processing. 

Cost of waste disposal. 

• Expenses relating to the plant: 
Cost of maintenance of the plant, 

Cost of maintenance of the electric network, 

Cost of network maintenance of thermal grid. 

Cost of taxes on buildings.  

Annual Cash Flow 
With all the above elements for each cell of feasible 

locations layer, assuming that it has already been 

designated the site and associated supply area ( ) of a 

plant, we can calculate an annual cash flow ( ) 

based on the usual equation: 

  
Here  is the sum of revenues,  the sum of the 

expenses and  is depreciation of all equipment 

(including transportation). The cash flow is calculated for 

all the predetermined time period (eg.  years) and then, 

subtracting the initial investment, the  is obtained 

for a plant. Note that we are not considering the problem 

of how to perform the annual exploitation of biomass and 

the criteria for optimal operation of the plant during the 

entire period of time. This requires another optimization 

model.  

Definition of the Data 

The model requires definitions of different types of data 
sets, which are assumed known and described in detail 

below, with their respective notations: 

• Cells throughout the region are a finite number 

(the same for each layer), they will be numbered 

(with positive integers) consecutively and shall be 

represented by the index set . We denote by  

the number of elements of . 

• The vector  has dimension  and is given by 
the cells in the data file Biomass. Each element of 

vector  indicates the type and amount (in tons.) 

of available biomass existing in the cell  of 

the region. The elements of the matrix  will be 

called "points of biomass" and denoted by 

. 

• The set , consists of the indices of cells 
being possible locations of the plants in the 

region. Denote by  the number of elements of 

. The indices  are therefore associated with 

the candidate sites to locate a plant. 

• The set , consists of the indices of cells 

belonging to the maximum supply area ( ), 

corresponding to the feasible plant location at 

position . Each of these sets depends on the 

manner in which the  is calculated for 
plants, for example, using the maximum radius . 

Denote by  the number of elements of . 

• The vector  will be called vector of benefits 
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(for the position ) and has dimension . 

This vector is determined by the criteria that the 

developer has chosen to soft requirements, 
reflected in the objective function. It is obviously 

directly related to the coefficients of income and 

costs at which the  is calculated. The 

element  represents the profit (revenue - 

expense) obtained for each ton. of biomass 

extracted from the cell  to be processed in 

a plant located at position . 

• The set , consists of the indices of the 

cells  of position , which also 

belong to  of other positions . In 
other words, they are the indices of the cells 

belonging to  which also belongs to  with 

. We denote by  the number of 

elements . Note that  can be empty and this 

means that each cell  belongs only to 

. In symbols: 

  

• The index set  represents the types of plants, 
which are defined by existing technologies and 

the possible sizes of plants. Denote by  the 

number of elements of . 

• The vector  has size  and each component 

, , denotes the amount of biomass 

required by a -type plant to operate for the 
preassigned time. 

• Each type of plant has a fixed cost for installation. 

This information is stored in an array  of size 

, whose elements are  where  

and . 

• The minimum and maximum quantities of plants 

of type , to be installed in the region will be 

represented by the symbols  and .  

Definition of Variables 

•  is a binary variable indicating whether the 

plant with technology type  must be 

installed ( ) or not ( ) at position 

, 

•  is a real variable, which indicates what 

fraction of the available biomass in cell  

will be used by the plant located at position 

.  

The variable  is bounded above by  and below by . 

Assuming that variables  are real, they allow the 

intersection between the supply areas ( ) of different 

plants. If we assume that , i.e. if they are 

binary variables, this means that all the available biomass 

in cell  will be used ( ) or not ( ) for 

plant , so that implicitly prohibits the intersection of 

.  

Binary Model 

Constraints (Strong Requirements) 

Strong requirements must be included in the model as 

constraints. First establish the constraints for the binary 

programming model that solves the problem with 

banning intersections. 

 

 

 

 

 

 

 

No installation of more than one plant in a candidate site for location: 

  (1) 

Satisfaction of the amount of biomass required by the plants at positions : 

  (2) 

If , , this means that no plant is located at position , but the inequality in (2) does not prevent some 

positive quantity of biomass is extracted for the plant in position . Therefore, we add a third constraint: 

  (3) 
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Used biomass can not exceed the amount of biomass  available at point .  

  (4) 
The number and type of plants to be installed should also be taken into account: 

  (5) 
Finally, the restriction of binary variables: 

  (6) 

Objective Function (Soft Requirements) 

The objective function maximizes the total profits ( ): 

  (7) 

To calculate the vector  of benefits we use the expression: 

  
where: 

-  is the revenue per ton. of biomass produced by the cell  processed in the plant : 

-  is the cost per ton. invested in the purchase, collection, transportation, storage, processing and waste disposal of 

the biomass available in cell  processed in plant . The coefficient  of  includes the cost of installing a plant of type  

on site , plus the costs of plant maintenance, maintenance of electrical and thermal networks and payment of taxes on 

commercial buildings. Depreciation should be taken into account. Finally, the model without intersections is as follows: 

  (8) 

Mixed Model 

The mixed model is nearly the same as binary, with the 

difference that allows intersections between . What 

we do is simply relax the variables  of the binary 

model and define them as real numbers between  and . 

Then  is a continuous variable that indicates what 

percentage of the biomass, available at the biomass point 

 will be used by the plant located at position 

. Thus the restriction (2) of biomass needed, takes 

the following form: 

  
It is easy to see that the constraints of type (3) are not 

necessary. Mixed programming model is considerably 

reduced in the amount of constraints. 
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 (9) 

In what follows we discuss the different approaches 

considered for the solution of both models.  

 Implementation of the Solution 

 Heuristics Method for Binary Model 

The binary model has  variables and  constraints, 

where: 

 

 

If the problem is not very large, you can use an exact type 

of optimization algorithm as Branch and Bound or 
Branch & Cut since (8) is a linear problem in binary 

variables. When  and/or  are too large, it is 

impossible to find the optimal solution with 

computational reasonable time, and a practical solution is 

to use heuristic methods. From this point of view the 

problem is combinatorial in nature and we can deal with 

it using a Genetic Algorithm ( ), which essentially 
randomly generates different "populations" of solutions 

and keeps the best. For a detailed description of this type 

of algorithm see in (Goldberg, 1989). 

The main difficult for the implementation of  is the 

necessary generation of many populations with a 

sufficient number of feasible solutions. The random 

generation of  does not guarantee feasibility 

and design of a random algorithm to obtain feasible 

solutions of (8) is needed. 

The idea we propose is to generate feasible solutions of 

(8) by a heuristic procedure, which allows to define 

feasible values of the variables  from given feasible 

values of . In other words, given a feasible location of 

the plants (defined values of ), which respects the 

constraints (1) and (5), we apply a heuristic procedure to 

find feasible values of  and therefore, we find a 

feasible solution  of (8). Under these 

conditions, Genetic Algorithm ( ) only have to 

generate populations of feasible values for the variables 

 (which is much easier) and the heuristic procedure 

( ) is responsible for complete a feasible values for 

the rest  of the variables. The calculation of the 

objective function value ( ) is then possible for 

each solution  generated and the Genetic 

Algorithm works. 

Heuristic Procedure 

The study region, is supposed to be divided into 
rectangular cells with approximately the same area. Each 

of these cells have an associated order index  and 

in turn, to each cell is associated also a pair of 

coordinates  = (row, column) indicating the 

position of the cell in a crosstab, containing information 

of the geographical site that defines this cell. This is the 

usual way to work with geographic data (Xun Shi and 

Elmore, 2008). 

- It is given a certain location of plants, i.e. a set of 

values  that satisfy the constraints (1) and 

(5). Denote by:  

  
Let , be the number of plants 

located by the  let be  
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indexes of the corresponding cells and 

 its corresponding 

coordinates in the crosstab. 

- For each of the chosen cell , with coordinates 

 in the crosstab and with type of plant , we 

define a "provisional" supply area , building a 

series of boxing rectangles ( ), centered in the cell of 

coordinates  and where  is obtained 

adding cells from the edge of  with the cells 

surrounding it: 
 

 

When this process reaches one end of the crosstab, the 

addition continues in all directions where is possible (on 

the sides where there are adjacent cells to ). The 

process ends up in step , when the amount of biomass 

available in all cells in  is sufficient for the operation 

of the plant of type  located at , i.e. it is greater or 

equal than . The rectangle  defines a provisional 

supply area ( ) to the plant in . This part of the 

heuristic we call construction of provisional areas. 

During construction of the rectangles , 

, it is not taken into account the 

positions of the other plants, and therefore, the ( ) 

may or may not have intersections with each other. Since 

the intersections are prohibited by the constraints (3) and 

(6), the cells of the intersection must be assigned to one 

(and only one) of the plants. This is done in the next step: 

- The  is calculated for each of the locations 

 , taking into account the provisional 

areas ( ) and values  are obtained. 

If the plant getting the highest  is  then, the 

cells given by  are definitely assigned to  and 

therefore ( ) is defined as the supply area  

(no longer provisional) of . This part of the heuristic we 
call assignment of supply area. 

- If  has not intersected other , 

the assignment of supply area step is repeated for the rest 

of the plant positions . 

- If  has intersection with any of the other 

, we comeback to the previous step, and 

the construction of provisional area and assignment of 

supply area steps are repeated for the remaining plants 

, but putting to zero the 

amount of biomass available in the cells of . This 

avoid that biomass in  is assigned to other plants. 

- In each cycle a definitely supply area (a number of 

cells) is assigned to one or more of the plants 

, leaving less and less "unassigned" 

plants at each step. The process ends when all plants are 

assigned a supply area without intersection with the 

others. This also means that we are implicitly assigning 

values  or  to the variables . 

Remarks 
- In the end, the final supply areas are not necessarily 

rectangles, but parts of them. During the process it is 

necessary to keep the information on which cells are 

assigned to which plants. Moreover, the heuristic ensures 

that satisfy the constraints (2), (3), (4) and (6). 

- It is clear that the procedure is not optimal and 

highly dependent on the order in which the  are 

assigned. Here we choose the descending order of the 

, but for a given set of locations another different 

order may provide a higher total . Nevertheless, 
the numerical experiences show satisfactory results. 

- Note that we have also built a function that, given a 

set of feasible values , determines the supply 

areas  corresponding to the components 

 and therefore, the values 

of variables , and calculates the total  = 

sum of all . This value is exactly the objective 

function value (7) of the binary model for . We 

denote this function , which can be written: 

 

 
In general, it is a nonlinear function of . This 

is because the  of a position  is not fixed, by the 

way the  is constructed in the heuristic, and it 

depends on the relative positions of the other plants, 

given by the vector . 

Reduced Binary Model 

The problem is reduced to maximize the nonlinear 

function  as a function of variables , subject 

to feasibility constraints: 
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 (10) 
Solving this nonlinear programming problem is carried 

out using a genetic algorithm (Mitchell, 1996) and the 

results can be seen later in the Numerical Experiences 

section.  

Optimal Solution of Mixed Model 

The implementation was done in  using the 
function library of solver GUROBI (GUROBI, 2012), 

developing a collection of classes and functions that were 

used for data processing, automated construction and 

solution of the mixed model. The information is assumed 

provided by several double entry text files (layers), which 

must contain the amount of biomass, elevation, distance 

to roads and distance to the nearest electrical connection 

at each cell of the file. The most important functions 

developed for the implementation of the main program, 

comprising the following parts: 

1. Load Data. 

2. Variable Definition. 

3. Constraint Definition. 

4. Solution. 

5. Solution Display.  

In the next section we give a description of the results 

that we consider relevant to an assessment of mixed 
programming model and its solution. Feasible sites for 

plants locations were generated randomly for the 

experiments and the basic information belongs to a 

southern part of Chile.  

Numerical Experiences And Discussion 

Numerical Experiences 

In this section we discuss the results obtained in solving a 
set of plant location problems with feasible locations 

layer randomly generated. We use the developed software 

for the Binary (8) and Mixed (9) models and a Genetic 

Algorithm for the Reduced Binary model (10). 

The data from the region, used for the experiments, were 

provided by the Department of Forestry at the University 
La Frontera, within an ongoing jointly project developed 

in the southern part of Chile. Figure 1 is a map of the 

region, indicating the areas of available biomass (in 

green), areas where there are restrictions (red and blue) 

and the feasible places where to locate a plant (yellow 

dots). 

Financial data were estimated taking into account the 

reports by (Xun Shi and Elmore, 2008) and Rentizelas et 

al. (2009). 

We designed a set of experiments, in which is fixed the 

amount of places to locate plants, but varying the 
locations of the installation sites, which were chosen 

randomly and are uniformly distributed in the region. An 

example (mauve points) is shown in Figure . The 

number of plants to be installed in each of the 

experiments varied from  to . We considered two 

different technologies, which define two types of plants 
characterized by the biomass required for its operation for 

 years. 

 

 

 

Figure 1: indicating the areas of available biomass (in green), areas where there are restrictions (red and blue), feasible 

places where to locate a plant (yellow dots) and locations of the installation sites, which were chosen randomly and are 

uniformly distributed in the region (mauve points).    
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Figure 2 illustrates the relationship between the value of the statistical means of the execution time of each algorithm with 

respect to the number of plants to be installed. Furthermore, another graph shows the relative error of the , for each 
number of plants 

 

Figure 2: Relationship between the value of the statistical means of the execution time of each algorithm with respect to the 

number of plants to be installed.  
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Figure 3: Relative error of the  ( ), for each number of plants.  

   

Figure 4: Relative error of the , for each number of plants.  

  

 

We conducted two additional experiments, the first is to modify the feasible locations, to investigate what happens when 

they are concentrated in a small area. We choose 20 possible locations concentrated in the center of the region. The results 

can be seen in Tables . 

 GA Mixed Binary Relat Error 

1 0.13 222.87 2991.8 0.38% 

3 82.7 2726.86 7048.61 0.33% 

5 192.19 - 4488.8 0.7% 

8 402.98 - 12101.54 0.82% 

Table 1: Time GA, Mixed, Binary and Averange Relative Error NPV(GA, Binary) of nearby plants   
 

 In the second experiment, we exaggerated the number of possible locations, in order to study what happens when there are a 

large number of possible locations. The results are shown in Table . 

 GA Binary Relat Error 

1 0.3615 3063.33 0.28% 

3 71.40 3544.46 0.45% 

5 128.85 3485.48 0.48% 

8     229.5 3704.95 0.53% 

10 329.12 3495.25 0.56% 

 Table 2: Time GA, Binary, and Averange Relative Error NPV(GA, Binary) of 60 feasible plants.  
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To improve the Genetic Algorithm ( ), we performed a series of experiments aimed to determine the best range of 

parameters: mutation, crossover, number of generations and population size. The results are shown in Tables  and . 

 

 

 Gen 60 Gen 120 Gen 240 

1 0% 0% 0% 

3 1.12% 0.2% 0.11% 

5 1.50% 0.8% 0.36% 

10 3.43% 1.9% 0.73% 

Table 3: Crossing mutation parameters, for population 20 
 

 Pop 20 Pop 40 Pop 60 

1 0% 0% 0% 

3 1.12% 0.87% 0.37% 

5 1.50% 1.33% 1.35% 

10 3.43% 2.32% 2.83% 

Table 4: Crossing mutation parameters , for 60 generation  

 

If the solution obtained in the  is given as initial solution to GUROBI algorithm in the Binary model, no improvement in 

the convergence was obtained. A combined method with  and GUROBI was more effective. The mode of operation is as 

follows: Run  to find a feasible solution with a high repetition rate, then assign values to the variables  of the Binary 

model, according to the solution of  then use GUROBI to solve the Binary model only for binary variables . We call 

this the "hybrid method". The results of this hybrid method are given in Table . 
 

 

 GA Hybrid 

1 0.13 4.43 

3 82.7 93.3 

5 192.19 206.5 

Table 5: Time GA and Hybrid  

 

Discussion  

From the results in experiments with homogeneous 
distribution of plants we can say that: 

1. The average of  for (RBM) is very close to 

the optimal  achieved by GUROBI in (BM) 

(  0.5% difference), which is reflected in Figure 

. 

2. From Figure  we see that both, the  in 

(RBM) and GUROBI in (MM), increase the 

running time with increasing the number of plants 

to install, while (BM) is relatively constant. Also 

the increasing of  in (RBM) becomes 

approximately linear (see Figure ). 

3. With the increasing of the number of plants to be 

installed, the running times of  in (RBM) 

approach those of GUROBI in (BM). See Figure 

. 

4. When the number of plants to be installed is 

greater than , the difference of  between 

 in (RBM) and GUROBI in (BM) increases, 

exceeding %. See Figure .  

From the results in experiments with concentration of 
plants in a relatively small area we can say that: 

1. Running times of GUROBI for (BM) are very 

sensitive to the distribution of feasible locations 

of the plants. When they are concentrated running 

times increase considerably (over one hour 

computation time), while the runtime for  in 

(RBM) never exceeds  minutes. See Table . 

2. We recommend to use the genetic algorithm in 
(RBM) when the number of plants to be installed 

is not greater than  and when the feasible 

locations of the plants are concentrated in a small 

region. This will give us an approximate solution 

with % of closeness to the optimal value of the 

 and a much smaller runtime. See Table . 

3. If there is a lot of feasible installation sites, the 
genetic algorithm performs remarkably well in 

time (see Table ) and is approximately % of 

the optimal  value (see Table ). Therefore 

it is preferable to use the genetic algorithm in 

(RBM) when there is a large number of candidate 

locations to install a set of plants. 

4. We consider that after  generations with  

population size, the solution found with  in 

(RBM) becomes significant. Increasing the size of 

the population does not imply a better behavior of 

the , but an increasing number of generations 

results in a significant advance to the optimal 
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solution. The best results were obtained with 

parameters of crossover and mutation of the order 

 and  respectively. See Table  and .  

With respect to a combined method GUROBI we 
can say: 

1. If we give the solution of  in (RBM) to 
GUROBI in (BM) as initial solution, there is not 

improvement, the time differences are not 

significant. 

2. Fixing values  of the  solution in (BM) 

when you want to install less than  plants, the 

hybrid method always achieves optimal or very 

satisfactory solutions. But if you want to find  

or more plant locations, the  does not ensure 
convergence, allowing a nonreliable initial 

solution to (BM) and hence, the hybrid method 

becomes inaccurate (see Table ). In the case of 

concentrated feasible locations of plants, it is 

extremely advisable to use the hybrid method, 

since  quickly find a feasible solution. When 

plants to install are less than , the  solution 

is confident and thus, finding the solution of (BM) 

without the varibles  is a simpler task that 

ensures the exact optimal solution. (See Table ). 

Conclusions 

This paper presents a binary and mixed programming 

model for locating biomass forestry plants. Both models 

determine the location and simultaneously define the 

supply area of each plant. In addition we propose two 

approaches to their resolution: the first is the coding of 

the Binary (BM) and mixed (MM) models in a 
commercial software (GUROBI) for medium-scale 

problems and the second is the application of a genetic 

algorithm to a Reduced Binary model (RBM) for larger 

problems.  
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