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Abstract: Several papers have reported approximate solutions to Einstein's equations in the Mixmaster 

universe model. Through a specific scheme, a general solution is obtained here. A particular instance of this 

solution is also studied which proves to be equivalent to proposing from the start a Wick rotation intended to 

recreate the evolution of the Mixmaster cosmology in the Hartle-Hawking time. 
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1. Introduction 

The Bianchi IX anisotropic homogeneous models 
have played a key role in the theoretical 

cosmology of recent years [1]-[4]. These models 

were first studied and investigated in detail by 

Belinskii, Khalatnikov and Liftshitz (BKL) with 

an aim of exhibiting the generic form of the 

cosmological singularity in a spatially 

homogeneous anisotropic environment, as has 

been implied since General Relativity itself was 

introduced [5]-[10]. BKL find an approximate 

solution by introducing a simplification to 

Einstein's equations leading to a Bianchi IX 
abbreviated system [8]. Such an approximation 

describes the behaviour of a particle like universe 

in terms of collisions and other sudden changes of 

trajectory which entail a form of evolutive 

segregation of the universe scale factors [8],[9]. 

Simultaneously, and in a similar way, Misner 

studied the Bianchi IX model, introducing the 

term "Mixmaster cosmology" in order to describe 

his particular approach to the initial singularity 

suggesting an infinitely oscillating image in a 

supposedly chaotic form [11]-[13]. In fact, this 

model has been used in its classical form as an 
important example of the so-called "chaos in 

General Relativity" [14]-[18]. Misner includes a 

simplification to the model in the curvature 

anisotropy potential [11]. In contrast to BKL, 

Misner resorts to the ADM (Arnowitt, Deser, 

Misner) technique to find that the model, in its 
presumed quantum-like form close to the 

singularity, and reproduces to a great extent the 

BKL results, namely, those of a particle colliding 

with a wall potential with intermediate stages 

identified as "Kasner" or "free particle" epochs 

[8],[11],[12]. Also in quantum terms, this universe 

model has been useful in exhibiting several 

propositions and consequences of the Hartle 

Hawking interpretation of the boundary conditions 

for physically acceptable solutions to the 

Wheeler-DeWitt equation [19],[20]. 
A substantial part of later studies, both theoretical 

and numerical [21]-[28], reproduce, to some 

extent, the concept of a universal particle colliding 

against a wall potential between free particle 

stages or "Kasner epochs" [8],[12]. 

More recently, an exact particular solution to the 

Mixmaster universe model within the complex 

General Relativity has been reported [29]. 

However, this solution restricts a particular value 

of one of the integral constants so as to simplify 

the process of finding a solution to the Einstein 

equations. This result is meant to resolve the long 
discussed integrability of the Bianchi IX model 

[30]. 

The present work sets out to show both a general 

solution to the Einstein equations in the 
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Mixmaster Universe Model within complex 

General Relativity, and the method to accomplish 

this solution. An interesting instance of this 

solution has also been included. 

 

2. The Mixmaster Universe Model; First 

Derivatives 
The scale factor evolution in the vacuum diagonal 

Bianchi IX (Mixmaster) cosmological model is 

governed by Einstein's field equations and a 

constraint, which are usually written as [5],[8],[9]: 
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Then, with an aim of rewriting Einstein's field equations in a more compact manner in order to apply our 

above-mentioned method, we define the transformation: 

      2exp,2exp,2exp 222  cba                             (3) 
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A first integral of this system is equation (2), which can be written as [8] 
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This equation is, in fact, a constraint on any 

solution to the second derivatives equation 

system. In the present case, despite having 
achieved a first integral, a solution to the second 

integral is still far from immediate, given the 

scrambled first derivatives. 

After a series of considerations on the symmetry 

of the possible partial derivatives of the first 
integrals such as 
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2 .  Trivial solutions aside, one possible 

separation of the first derivatives seems to be  
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where 1i . 

In order to show that this separate expression of the first derivatives satisfies Einstein's dynamical equations, 

let us consider, for instance, the derivative of the second equation of system (9) given by 
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By substituting definitions (4) and the first derivatives apparent in (9), equation (10) can be written as: 
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It is clear now that equations (9) satisfy the second 

equation (7). Likewise, the other two equations (9) 

can be derived to verify that they satisfy the 

remaining equations (7). Hence, this fruitful 
analysis has led to a first integral of Einstein's 

Mixmaster universe model, now with separate 

expressions of the first derivatives. 

 

3. A General Solution to the Mixmaster 

Universe 
Obtaining a general solution to Einstein's 

equations for the Mixmaster cosmology takes us 

to the j  function space defined in the equation 

system (4), which turn out to be the Jacobi 

functions. To this purpose, equations (9) are 

substituted in (7), resulting in a new system in 

terms of the functions 
1
j , 

2
j  and 

3
j  instead of 

 ,   and  , namely, 
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This equation system is strictly different to that reported by Belinskii et al. (BGPP) [6]. By multiplying each 

equation (11) by an adequate factor, one finds that 
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In other words, the squared functions j  only differ from one another by an additive constant, so that 
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The final solution can be written in terms of just one Jacobi function, instead of the three of them. Most cyclic 

systems like (11) involve an order relationship such as (13). Thus, the system can be reduced to one equation, 
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By integrating (14), one obtains 
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where 
0

 , 
1

q  and 
2

q  are integration constants. Then, placing equation (15) in system (13), two expressions 

for 
2

j  and 
3

j  are arrived at which, along with 
1
j  from (15), satisfy equation system (11). Given the 

definitions of these functions along with expressions (4) and (3) 
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In this way, a general solution to Einstein's 

equations for the Mixmaster universe model has 

been obtained without any approximation. As we 

have seen, the j  functions are complex and 

dependent on a complex variable. When analyzing 

them, it seems improbable that real or complex   

or 
1

q , 
2

q  values exist that produce real scale 

factors and cosmological time. 

In any case, assuming randomness, it is most 

probable that the variables and parameters 

involved take complex values. Thus, the need for 

conditions of reality is clear, which will be 

discussed in the next section. Meanwhile, the 

traditional real four-dimensional space-time 

appears to be different, namely, its entities 
involved now exhibit a complex nature, each one 

of them possesses two degrees of freedom, both in 

space and in time. The 

traditional classical four-dimensional scenery now 

encompasses eight dimensions. 

 

4. Reality Conditions 

Imposing some reality conditions on complex 
General Relativity is a rarely studied topic. 

However, logarithmic time values   and 

parametric values 
1

q , 
2

q  ensuring real 

cosmological time and scale factors, lead to find, 

at least, one conditions for a real cosmological 

time. 

To this purpose, given the complexity of the 

mentioned values, it should be specified that 

21
 i                                                               (17) 

In this new environment, with the squared scale factors in equations (16), equation (6) now looks like 
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In this manner, equation (18) is integrated along a contour C  on the plane 
2

 vs 
1
 . 

A reality condition for the cosmological time in equation (19) is, then, 
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Notice that both the scale factors and expression (6) are complex functions of complex variables. The 

previous reality condition applies to the cosmological time alone. In the next section, an alternative imaginary 

cosmological time scenario is proposed. 

 

5. The Imaginary Time 

An interesting instance of the general case posed by equations (16) results from assuming   and the 
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parameters 
1

q , 
2

q  to be purely imaginary, i.e., 
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Within this framework, it is possible to see that 
1

j  is a real function of real variables. Moreover, given 

expression (22) and equations (16), the squared scale factors can be put in the form: 
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These expressions turn out to be positive real functions under the conditions imposed on  ,  
1

q , and 
2

q . 

Thus, abcV   is also a real function. Consequently, once such real functions are substituted in (5), the 

cosmological time becomes imaginary. 

Figures 1, 2, and 3 show the behaviour of the scale factors for a particular value set of 
1

p  and 
2

p . 
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Figure 1. The time evolution of scale factor a  for the Mixmaster universe general solution, when the 

logarithmic time   and the parameters 1
q

 and 2
q

 are purely imaginary. The curve shown in 

this graphic is determined by 
2

1
p

 and 
102 p

. 
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Figure 2. The scale factor b  time evolution, for the Mixmaster universe general solution, when the 

logarithmic time   and the parameters 1
q

 and 2
q

 are purely imaginary. The curve shown in 

this graphic is determined by 
2

1
p

 and 
102 p

. 
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Figure 3. The scale factor c  time evolution, for the Mixmaster universe general solution, when the 

logarithmic time   and the parameters 1
q

 and 2
q

 are purely imaginary. The curve shown in 

this graphic is determined by 
2

1
p

 and 
102 p

 
 

It can be easily shown that solving the particular 

case determined by when the scale factors and 

equation (6) are real functions of pure imaginary 
variables can be alternatively achieved from 

applying a Wick  itt   rotation from the 

beginning, leading to the evolution of the 

Mixmaster cosmology in the imaginary Hawking 

time. 

 

6. Comments and Conclusions 

Following a strategy applied to handling the 

expressions compacted in section 2, Einstein's 

equations for the Mixmaster universe model have 

been integrated, and an exact general solution has 

been found. Furthermore, this strategy enables one 

to translate the problem to the Jacobi function 
space, reducing the original formulation based 

upon three non-trivial Einstein's field equations 

and one constraint down to a single equation (14). 

To cap it all, the found solution is still more 

general than the ones previously reported [5]-

[10],[11],[29]. 

As an instance of the obtained general solution, 
pure imaginary values have been proposed for the 

logarithmic time and the 
1

q , 
2

q  parameters. 

Although the description is given in a Hawking-
like imaginary time (Wick rotation), in this case 

the problem of the singularity acquires a more 

complicated character. It has been shown in the 

previous figures that the scale factors behave with 

a considerable dimensional segregation, namely, 

one out of the three factors vanish  at specific T  

values, while the other two factors a  and c  lacks 

any zeroes over the proposed time interval. 

As in the case of the Hawking imaginary time, no 

singularity exists at the origin of the previous 

example. Yet, the critical points of the time 

evolution of this universe are abundant, though 

only two of the three scale factors vanish there. 
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Finally, and coming back to the found general 

solution, it is clear that its description of the 

universe evolution in the Mixmaster model is far 

more complicated than the conventional 

descriptions. This is mainly due to a change in the 

location of events from four to eight dimensions 

while the scale factors and the time exhibit two 

degrees of freedom each, bringing about a more 

sophisticated cosmology. 
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