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Abstract: The rapid growth in genomic and proteomic data causes a lot of challenges that are raised up and need 

powerful solutions. It is worth noting that UniProtKB/TrEMBL database Release 28-Nov-2012 contains 

28,395,832 protein sequence entries, while the number of stored protein structures in Protein Data Bank (PDB, 4-

12-2012) is 65,643. Thus, the need of extracting structural information through computational analysis of protein 
sequences has become very important, especially, the prediction of the fold of a query protein from its primary 

sequence has become very challenging.  The traditional computational methods are not powerful enough to 

address theses challenges. Researchers have examined the use of a lot of techniques such as neural networks, 

Monte Carlo, support vector machine and data mining techniques. This paper puts a spot on this growing field and 

covers the main approaches and perspectives to handle this problem. 
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I. INTRODUCTION 

Proteins transport oxygen to cells, prevent harmful 

infections, convert chemical energy into mechanical 

energy and perform many other important and 

beneficial biological processes. Proteins are also 

notable for their more deleterious effects; for instance, 

viruses are surrounded by protein shells that allow 

them to gain access to host cells. Knowing the protein's 

three-dimensional structure (i.e., the conformation or 
fold) is an important step towards understanding 

protein functions and brings many benefits like the 

ability to compose and invent drugs which interact 

with particular proteins, greater understanding of 

genetic defects, and improved therapies for diseases 

such as AIDS and malaria.  

 

It is worth noting that UniProtKB/TrEMBL database 

Release 28-Nov-2012 [14] contains 28,395,832 protein 

sequence entries, while the number of stored protein 

structures in Protein Data Bank (PDB, 4-12-2012) [15] 
is 65,643. Thus, the need of extracting structural 

information through computational analysis of protein 

sequences has become very important and a lot of 

research has been conducted towards this goal in the 

late years. Especially, the prediction of the fold of a 

query protein from its primary sequence has become 
very challenging.  

 

In the current work, different methods to face the 

problem of protein fold recognition are covered. This 

paper is organized as follows: section 2 illustrates the 

preliminaries of the protein structure. Section 3 

clarifies the current categories of Protein fold 

recognition methods; section 4 demonstrates the 

different methods for protein fold recognition. Finally, 

section 5 concludes this paper.   

II. PROTEIN STRUCTURE IN A GLANCE 

Proteins are formed using the genetic code of the 

DNA. Three different processes are responsible for the 

inheritance of genetic information: Replication: a 

double stranded nucleic acid is duplicated to give 

identical copies, Transcription: a DNA segment that 

constitutes a gene is read and transcribed into a single 

stranded sequence of RNA. The RNA moves from the 

nucleus into the cytoplasm, Translation: the RNA 
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sequence is translated into a sequence of amino acids 

as the protein is formed.   

 

Proteins are constructed from a set of twenty naturally 

occurring amino acids. Amino acids are organic 

compounds, formed from carbon, hydrogen, nitrogen, 
oxygen, and sulfur. Amino acids form proteins by 

pending together in our cells by ribosomes, which are a 

cellular organelle that synthesizes polypeptide chains 

that will become proteins. All amino acids have 

a backbone and a residue. The backbone contains a 

nitrogen, denoted by N , followed by two carbons 

labeled the α-carbon, Cα,  and the prime-carbon, C’ , 

so the backbone atoms are ordered from left-to-

right N- Сα- C’ and it is the same for all the amino 

acids. The N atom has a hydrogen, H, attached to it, 

the C’ atom has an oxygen, O, attached to it (known as 

the carbonyl O), and the Cα atom has a hydrogen H, 

and the residue attached to it [1]. To form the protein, 

the amino acid backbones are linked together in a long 

chain to form peptide bonds between the C’ of an 
amino acid and the N of the following amino acid. 

 

The residue is a set of atoms attached to the central Cα. 

Amino acid is distinguished by its residue. The atoms 

of the residue are labeled using the Greek alphabet, 

beginning with the backbone's α-carbon and followed 

by the residue's β-carbon, -carbon, -carbon, etc as 

in Fig 1.  

 
 

Fig 1 A typical tri-peptide sequence. 

A. Covalent Bonding 

The primary definer of protein structure is the covalent bonding. This bond has some parameters like the bond 

length, L which is measured as the distance between two atom's centers and is in angstroms, Å, the bond angle, K 

which is measured as the angle created by three atoms with two bonds between them and is in degrees, and 

the torsion angle, θ which is measured as the rotation of the bond about some axis and is in degrees [2] as seen in 

Fig. 2. 

 
 

Fig 2 The covalent bonding parameters: the bond length, bond angle and torsion angle. 

 



 

 

 

http://www.ijSciences.com Volume 2, Issue June 2013 
 

26 

 

The values of the parameters depend upon the atoms 

forming the bond and the processes that went into 

creating the bond [2].The common covalent bonding 

types in proteins are single bonds, double bonds, 

peptide bonds and disulfide bridges. 
 

Torsion angle is the main degree of freedom within the 

bonds. The three torsion angles related to the backbone 

bonds are: the rotational angle between the N and Cα 

atoms which is called Ǿ, the rotational angle between 

the Cα and C’ atoms which is called ψ, and the 

rotational angle between the C’ and the following 

amino acid's N which is called w (see Figure 1). w is a 

peptide bond and it is restricted to angles 180o and 0o. 

The Ǿ and ψ angles rotate much more freely [2], [3]. 

 

Beside the three torsion angles, there are rotamer 
angles associated with the torsion angles found in the 

single bonds of the amino acid sidechains. These 

angles begin with x1, the torsion angle of the C’-

 Cβ bond, and continue on with x2, x3, etc. The 

protein's conformation is affected by changes in 

rotamer and backbone torsion angles. A change in a 

rotamer angle will only affect the location of a single 

sidechain's atoms, but a change in Ǿ, ψ, or w will 

affect the location of every backbone and sidechain 

atom following it. Thus a protein is a long chain that 

varies in shape primarily because of the rotation of 
each amino acid's Ǿ and ψ angles, and their choice of 

two possible w values [2]. 

 

 

B. Secondary Structure 

A secondary structure is a repeating three-dimensional 

structure with a fixed bonding pattern. These structures 

are formed by a weak hydrogen bonding between 

atoms on different amino acids. 

 

N atoms are known as donors where they share their 

H atoms with the other atoms. Acceptors, mostly O, 

are attracted to these donated H atoms because of their 

respective opposite charges 

 
α-helix is considered the most common protein 

secondary structures. The hydrogen bonds in a α-

helix occur between the N of the i amino acid and the 

carbonyl O of the i+4 amino acid.  

 

The other common secondary structures are β-

sheets. β-sheets are constructed when a hydrogen 

bonds are formed between two relatively straight 

protein backbone segments that are lied parallel to each 

other as seen in Fig 3. The individual segments are 

referred to as β-strands. There are two types of β-

sheets, anti-parallel and parallel. 
 

β-sheets are typically anti-parallel where the 

directions of the two β strands run opposite to each 

other. The Hydrogen bonds are formed between the 

two β-strands where the ith amino acid's 

carbonyl O attached with the  j
th amino acid's 

backbone N, and between the ith amino acid's N and 

the jth amino acid's carbonyl O. Unlike the α-helices, 

the hydrogen bonding pattern between the two β-

strands skips the i+1   and j-1 amino acids and 

continues with the i+2   and  j-2 amino acids [2], [4]. 
 

A less common conformation is the parallel β-sheet 

where the two strands are running in the same 

direction. The backbone N of the i amino acid forms a 

hydrogen bond with the carbonyl O of the j amino 

acid, but the i carbonyl O forms a hydrogen bond with 

the j+2 backbone N. Then the i+2 backbones N will 

form a hydrogen bond with the j+2 carbonyl O and so 

on. 

 

 

 
Fig 3 The most common secondary structures: alpha helices and beta sheets 

 

Often, the secondary structures are organized in large 

groups called motifs. Common motifs include helix-

helix, helix-loop-helix, and the Greek key motif, which 

is four adjacent anti-parallel β –sheets [2], [4].  

 

C. Factors affect the 3D-Conformation 

1) Hydrophobicity: Some of amino acids are polar. 

When they are exposed to the water, they interact with 

it. These amino acids are called hydrophilic like Thr, 

Tyr, Ser, Asp and Trp. Being exposed to water allows 
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their polar atoms to hydrogen bond with the 

surrounding water atoms. This is energetically 

beneficial to the protein. Other amino acids are 

called hydrophobic which are repelled from water. 

They are generally seen on the interior of the protein 

away from the surface and the surrounding solvent. 
These include Ala, Val, Pro, and Met. The 

hydrophobic and hydrophilic effect determines, to a 

large extent, how the protein will fold [5]. 

 

2) Protein Energetics: The hydrophobic and 

hydrophilic effect is one aspect of the protein's 

energetics. By energetics, the protein's folding process 

is referred to as an attempt to minimize its 

thermodynamic energy. Beside the hydrophobic and 

hydrophilic effect, the interactions such as hydrogen 

bonding and side-chain entropy also contribute to the 

protein's energy. 
 

Side-chain entropy relates to the conformation of each 

amino acid's side-chain. Side-chains have a variety of 

configurations that they can appear in. As they become 

buried, this freedom is reduced and entropy decreases 

[5].  

 

3) Energy Minimization: Proteins are constructed of 

atoms constrained by bonds and affected by forces 

exerted on them by surrounding atoms, both in the 

protein and in the surrounding solvent. These problems 
can be thought of as an optimization function. This 

energy function will contain parameters such as the 

covalent bonds between atoms, the hydrophobic effect, 

the hydrogen bonding, and other effects. This 

constitutes a very large complicated function that 

theoretically should be solvable [5], [6]. 

 

D. Tertiary structure  

The process of protein folding results in a compact 

structure in which secondary structure elements are 

packed against each other in a stable configuration, 

often called a `fold'. Many elegant structures have 

evolved, including curved, barrel-like β-sheets, parallel 

bundles of helices, and propellor-like structures. Folds 

are also referred to as `topologies' since they can be 

thought of as sets of connected secondary structure 

elements [6].  
 

Fold recognition and threading methods can be used to 

assign tertiary structures to protein sequences, even in 

the absence of clear homology. Fold recognition and 

threading methods aim to assign folds to target 

sequences that have very low sequence identity to 

known structures. Fold recognition methods work by 

comparing each target sequence against a library of 

potential fold templates using energy potentials and/or 

other similarity scoring methods. The template with the 

lowest energy score (or highest similarity score) is then 

assumed to best fit the fold of the target protein. 

Although fold recognition and threading techniques 

will not yield equivalent results as those from X-ray 

crystallography, they are a comparatively fast and 

inexpensive way to a build a close approximation of a 

structure from a sequence, without the time and costs 
of experimental procedures. 

III. CURRENT PROTEIN FOLD RECOGNITION 

CATEGORIES 

In year 1994, The Protein Structure Prediction Center 

at Lawrence Livermore Laboratories has conducted 

a community wide experiment on the Critical 

Assessment of Techniques for Protein Structure 

Prediction (CASP).  
 

CASP goal is to help the advance of methods to 

identify protein structure from sequence. CASP 

provides the means of objective testing and evaluating 

of these methods via the process of blind prediction. 

CASP experiments provide the current state of protein 

structure prediction, the identifying of what the 

progress has been made, and highlighting where future 

effort may be most productively focused.  

 

For the purpose of evaluating the different techniques, 
CASP divides the predictions into three different types: 

comparative modeling, ab initio predictions and fold 

recognition [7].  

 

A. Comparative Modeling(CM) 

Comparative models attempt to match the target's 

amino acid sequence with the amino acid sequences of 

proteins with known structures. Then the target 

protein's structure is assumed to be similar to that of 

the matched protein's known structure. This technique 

performs best when one can find a family of similar 

proteins. The main framework of these models is 
similar with significant variations at each step. The 

process starts with defining families or classes of folds 

and noting the sequences that produce those folds, then 

searching for sequences similar to our target using 

some alignment technique, such as SWISS-PROT [8]. 

The similar sequences will provide a template fold 

family for the target protein. Finally, the target protein 

is fitted to the template using the restraints inherent in 

the template. 

 

These models suffer from several difficulties at each 
step. Protein families can be difficult to discern. Due to 

evolutionary effects within different species, proteins 

with divergent amino acid sequences may share a 

similar conformation. Also, there are many examples 

of proteins with a high degree of sequence similarity, 

but different folds. In addition, there is a large class of 

proteins for which no family can be found, and, hence, 

no model created [11].     
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B. Ab Initio Techniques 

Ab initio or “new fold” (NF) models construct the 

protein using general principles-many of which are 

thermodynamic in nature. Ab initio folding methods 

build the 3D structure of a protein from its sequence 
without using any templates. Generally, it is assumed 

that a protein folds to a global minimum-energy 

conformation.  

 

In order to find such a conformation, there are two 

approaches. In the first one, researchers simulate 

protein folding by doing standard molecular dynamic 

simulation with a physically reasonable potential 

function. This approach is computationally expensive. 

In addition, due to the inadequacies of current potential 

functions, the probability that a native state will be 

found at a global minimum-energy conformation is 
significantly reduced [9]. 

 

The second approach to do ab initio folding is the 

direct conformation space search where the successful 

prediction of the native structure of a protein requires 

both an efficient sampling of the conformational space 

and an energy function that recognizes the native 

conformation as the lowest in energy. However, 

exhaustive conformation space search is still 

formidable due to current computing speeds. To deal 

with that, researchers have attempted to reduce the 
search space by simplifying models or reducing the 

conformation space. 

 

It has been observed that ab initio folding cannot 

perform consistently for all classes of proteins. In fact, 

ab initio folding totally fails for proteins longer than 

150 residues [9].  

 

C. Fold Recognition 

Fold recognition (FR) or threading is a cousin to 

sequence homology. Instead of searching for 

significantly similar sequences and deducing the 
structure of the protein, Fold recognition methods try 

to recognize the structural fold of a protein by using a 

structure template library and the protein’s sequence 

information then generate an alignment between the 

query and the recognized template from which the 

structure of query protein can be predicted [10]. Fold 

recognition techniques do not require similar 

sequences in the protein databank, just similar folds 

[12]. Due to phenomena of deletions, insertions, 

varying sequence length and others, there are 

thousands of possible ways to match a sequence to a 
template [13]. 

 

Fold recognition methods are so efficient when the 

sequence has little or no primary sequence similarity to 

any sequence with a known structure and when some 

model from the structure library represents the true 

fold of the sequence.  

 

Current fold recognition methods suffer from many 

points: First, current energy functions are not precise 

enough to determine the free energy of a certain 
conformation; Second, there is no direct computational 

method that can recognize the conformation. Also, the 

size of the conformation space is huge. Protein 

threading problem is considered as NP-complete and 

MAX-SNP-hard [16], [17]. 

 

In recent years, the traditional boundaries between 

CM, NF, and FR have become blurred and the 

distinction between individual methods has become 

less clear. Sequence searching has become more 

powerful and arguably the traditional threading 

techniques which are based on physical energy 
potentials are becoming less popular. The term “fold 

recognition” is now often used to encompass all 

methods able to carry out template based modeling 

beyond the so-called “twilight zone” of sequence 

identity.  

  

IV. PROTEIN FOLD RECOGNITION 

METHODS 

 

There are many successful methods to face protein fold 

recognition problem. 
 

1) Support Vector Machine (SVM): Xu has 

proposed a Support Vector Machine (SVM) regression 

approach to directly predict the alignment accuracy of 

a sequence template alignment [25]. The authors 

implemented experiments on a large-scale benchmark 

using their Support Vector Machine (SVM) regression 

approach. They argued that experimental results show 

that SVM regression method has much better 

performance in both sensitivity and specificity than the 

composition corrected Z-score method and SVM 

regression method also outperforms SVM 
classification method. In addition, SVM regression 

method enables the threading program to run faster 

than the composition-corrected Zscore method.  

 

Sangjo Han et al. presented an alternative method for 

estimating the significance of the alignments [26]. A 

protein query is aligned to a template of length n in the 

fold library, and then this alignment is transformed into 

a feature vector of length n+1, which is then evaluated 

by Support Vector Machine (SVM). The output from 

SVM is converted to a posterior probability that a 
query sequence is related to a template, given SVM 

output. The new method outperforms PSI-BLAST and 

profile-profile alignment with Z - score scheme. The 

reason of that is related to the intermediate sequence 

search and its ability to recognize the essential features 
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among alignments of remotely related proteins.  

 

W. Chmielnicki has presented a combined SVM-RDA 

classifier for the Protein fold recognition [27]. This 

model combines a well-known Support Vector 

Machine (SVM) classifier with Regularized 
Discriminant Analysis (RDA). It is used on a real 

world data set. The experiments showed that it 

outperforms the previously published methods. 

 

2) Structural pattern-based methods: SPREK 

(Sequence structure Pattern-matching by Residue 

Environment Comparison) is a method for evaluation 

of protein models based on residue packing 

interactions developed by Taylor and Jonassen [24]. 

SPREK evaluates the register of a sequence on a 

structure based on the matching of structural patterns 

against a library derived from the protein structure 
databank. SPREK is a very straightforward approach. 

It is characterized by its simplicity; also there are no 

large tables of potentials or any large weight matrices. 

It did not discard structural information as occurs in 

the majority of methods. The major advantage of this 

method is its ability to operate using only the α-carbon 

atom positions. 

 

3) Neural network: Jones has presented 

GenTHREADER[18] as a new method for fold 

recognition. GenTHREADER can be divided into three 
stages: alignment of sequences, calculation of pair 

potential and salvation terms and evaluation of the 

alignment using a neural network. Jones claimed that 

the speed of this method, along with its sensitivity and 

low false-positive rate makes it ideal for automatically 

predicting the structure of all the proteins in a 

translated bacterial genome (proteome).  

 

It is worth noting that GenTHREADER is able to 

produce structurally similar models for one-half of the 

targets, but significantly accurate sequence-structure 

alignments were produced for only one-third of the 
targets. Also, it can find the correct answer for the easy 

targets if a structurally similar fold was present in the 

server's fold libraries. However, among the hard targets 

it is able to produce similar models for only 40% of the 

cases, half of which had a significantly accurate 

sequence-structure alignment.  

 

Kuang Lin et al has presented TUNE (Threading Using 

Neural nEtwork) [19]. TUNE uses an artificial neural 

network model to predict compatibility of amino acid 

sequences with structural environment.   
 

But their model is not trained to discriminate native 

protein structures. TUNE is applied on the 

discrimination of protein decoy and native 3D 

structure, its performance is comparable to pseudo-

energy functions with atom level structural description, 

better than the two functions with residue level 

structural descriptions.   

 

Mcguffin and Jones [20] have improved and 

benchmarked GenTHREADER method; their 
improvements increase the number of remote 

homologies that can be detected with a low error rate 

which imply a higher reliability of score which also 

increase the quality of the models improved. 

 

Thomas W. proposed protein fold class prediction 

using neural networks with tailored early-stopping 

[22]. This method consists of two stages: first the 

training patterns are used completely for gradient 

calculation and then they are split into a training and 

validation data set. This led to good generalizing 

neural networks. The experiments showed that 
standard feed-forward neural networks combined with 

an appropriate regularization scheme can classify the 

fold class of a protein given solely its primary and it 

outperformed the standard statistical approaches (like 

the nearest neighbor method etc and did not perform 

worse than Support Vector Machines (SVMs).   

 

Nan Jiang et al. proposed MESSM which is a protein 

fold recognition model with mixed environment-

specific substitution mapping [21]. It has three key 

features: a structurally-derived substitution score 
generated using neural networks, a mixed environment 

specific substitution mapping  developed by combing 

the structural-derived substitution score with sequence 

profile from well-developed sequence substitution 

matrices, and  a support vector machine employed to 

measure the significance of the sequence-structure 

alignment. MESSM is tested on two benchmark 

problems; Wallner’s Benchmark and Fischer’s 

Benchmark, and MESSM was found to lead to a good 

performance on protein fold recognition. 

 

4) Evolutionary methods: Genetic algorithms were 
introduced early in 1992 [28]. Then, Unger and Moult 

have developed a genetic algorithm search procedure 

suitable for use in protein folding simulations [29]. 

Genetic algorithms are used to fold proteins on a two-

dimensional square lattice in the HP model. A 

population of conformations of the polypeptide chain 

is used and then the mutation is used to change the 

conformations. Also, crossover is used in which parts 

of the polypeptide chain are interchanged between 

conformations. It was found that the genetic algorithm 

is dramatically superior to conventional Monte Carlo 
methods. 

 

Yadgari et al. addressed the genetic algorithm 

paradigm used to perform sequence to structure 

alignments [30]. The sequence-structure pairs were 
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taken from a database of structural alignments where 

the sequence of one protein was threaded through the 

structure of the other. In this study, a proper 

representation is introduced where genetic operators 

can be effectively implemented. This representation 

consists of numbers usually zeros and ones or integer 
number when there is a sequence deletion; an example 

of representation is 11110011311 where 1 means a 

position of sequence on structure, 0 means structure 

deletion and any other number like 3 in the example, 

means sequence deletion. The effects of changing 

operators and parameters are explored and analyzed. 

The results of experiments indicate that the Genetic 

Algorithms method is a feasible and efficient approach 

for fold recognition.  

 

Unger discussed the use of genetic algorithms to 

address the problem of protein structure prediction and 
protein alignments and introduced a general framework 

of how genetic algorithms can be used for protein 

structure prediction [31]. Using this framework, the 

significant studies that were published in recent years 

are discussed and compared. Unger suggested some 

improvements to be made to GA methods to improve 

performance. One obvious aspect is to improve the 

energy function. An interesting possibility to explore 

within the GA framework is to make a distinction 

between the fitness function and the energy function. 

Unger also introduced the use of explicit memory into 
the emerging substructure. 

 

Modified Keep-Best is proposed by M.V.Judy and 

K.S.Ravichandran as an intermediate selection strategy 

for genetic algorithms and it is applied for protein 

folding problem [32]. The performance of the 

algorithm is tested for a set of six sequence-structure 

pairs. The effects of changing operators and parameters 

are explored and analyzed. The authors claimed that 

genetic algorithms threading is quite robust and is not 

overly dependent on the particular selection of 

parameter or operators.   
 

5) Bayesian networks: Raval et al. has presented a 

Bayesian network approach for protein fold and 

superfamily recognition [23]. Bayesian network is a 

probabilistic graphical model that represents a set 

of random variables and their conditional 

dependencies via a directed acyclic graph (DAG), 

which includes, as a special case, hidden Markov 

models. This model is implemented to learn amino 

acid sequence, secondary structure and residue 

accessibility for proteins of known three dimensional 
structure. Raval argued that the cross validation 

experiments using Bayesian classification showed that 

the Bayesian network model which incorporates 

structural information outperforms a hidden Markov 

model trained on amino acid sequences alone. 

 

6) Monte Carlo methods: Monte Carlo methods are 

a class of computational algorithms that rely on 

repeated random sampling to compute their results. 

Monte Carlo methods are especially useful for 

simulating systems with many coupled degrees of 
freedom. Monte Carlo methods have traditionally been 

employed to address the protein folding problem. 

Traditional Monte Carlo and molecular-dynamics 

simulations tend to get caught in local minima, so the 

native structure cannot be located and the 

thermodynamic quantities cannot be estimated 

accurately. To resolve this problem, Liang and Wong 

proposed an Evolutionary Monte Carlo (EMC) 

approach for protein folding simulations [33]. EMC 

can be applied successfully for simulating the protein 

folding on simple lattice models and to finding the 

ground state of a protein. The authors claimed that 
EMC is faster than the genetic algorithm and the 

conventional Metropolis Monte. 

  

7) Parallel Evolutionary Methods: Many 

researchers used Parallel Evolutionary Methods (PEM) 

for protein fold recognition. Parallel hybrid gas was 

introduced by Carpio et al. for three dimensional 

structure predictions of polypeptides [34]. The 

previous research of Carpio was insufficient to produce 

better fit conformers, so Carpio improved it in two 

substantial aspects. The first is a parallelization of the 
original algorithm to enrich the diversity of conformers 

in the population and the second a hybridization of the 

simple GA in order to process the atoms of the side 

chains. Carpio et al. claimed that a comparison of the 

best fit individual after the 500th generation obtained 

by the hybrid GA reveals more accurately the level of 

evolution of the process. 

 

Nguyen et al. proposed a parallel hybrid genetic 

algorithm for solving the sum-of-pairs multiple protein 

sequence alignment problem [35]. They present a new 

GA-based method for more efficient multiple protein 
sequence alignment. A new chromosome 

representation and its corresponding genetic operators 

have been proposed. A multi-population GENITOR-

type GA is combined with local search heuristics. It 

was then extended to run in parallel on a 

multiprocessor system for speeding up. The 

experimental results showed that the proposed method 

is superior to MSA, OMA and SAGS methods with 

regard to quality of solution and running time. It can be 

used to find multiple sequence alignment as well as 

testing cost functions. 
 

MOfmGA was introduced by Day et al.[36] as parallel 

multi-objective implementation for protein structure 

prediction. The authors focused on tuning fmGA in an 

http://en.wikipedia.org/wiki/Graphical_model
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Coupling_(physics)
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attempt to improve the effectiveness and efficiency of 

the algorithm to address protein structure problem and 

to find better ways to identify secondary structures. 

Problem definition, protein model representation, 

mapping to algorithm domain, tool selection 

modifications and conducted experiments were 
discussed in this study. They claimed that their 

progress of using MOfmGA have been modified to 

scale its efficiency to 4.7 times. 

 

8) Parallel evolution strategy: The Single Query 

Single Template Parallel ES Threading (SQSTPEST) 

method is proposed by Islam and Ngom[37] protein 

threading based on evolution strategy. They used two 

parallel approaches for fast threading. The 

parallelization is based on master-slave architecture. 

The method threads one query against one template. 

They used High Performance Computing environment, 
SHARCNET (Shared Hierarchical Academic Research 

Computing Network) as computing platform for 

experiment. The authors claimed that this method has 

obtained at least better results than current comparable 

approaches, as well as significant reduction in 

execution time. 

 

EST is a novel evolution strategy for protein threading 

problem using evaluation strategy proposed by Alioune 

Ngom [38]. The author also proposed a parallel 

method for fast threading called parallel EST.  Parallel 
EST was implemented on Grid-enabled platforms for 

High-Performance Computing. The author was only 

interested in determining the best alignment between a 

query and a template given an energy function so he 

was planning to use a better energy function than the 

one discussed in the study. Also, a threading score 

between a query and a template may not provide 

enough information about whether the template is the 

“correct” fold. That is, from the threading scores 

between a query and a pool of templates, so it is 

unknown whether the query’s correct fold template is 

in the pool, or which is the correct fold even if it is 
there. 

 

Probabilistic roadmap methods for motion planning are 

used in a new computational technique proposed by 

Thomas and Amato for studying protein folding [39]. 

This technique yielded an approximate map of a 

protein’s potential energy landscape that contains 

thousands of feasible folding pathways. Thomas and 

Amato claimed that the other simulation techniques, 

such as molecular dynamics or Monte Carlo methods 

required many orders of magnitude more time to 
produce a single, partial, trajectory. They use STAPL 

method to easily parallelize their sequential code to 

obtain scalable speedups. 

 

Wiese and Hendriks introduced a parallel evolutionary 

algorithm called PRnaPredict for RNA secondary 

structure prediction [40]. PRnaPredict is a fully parallel 

implementation of a coarse-grained distributed EA for 

RNA secondary structure prediction and is based on 

RnaPredict. Two sets of experiments were performed 

on five known structures from 3 RNA classes. The first 
determines the actual speedup and the second evaluates 

the performance of P-RnaPredict through comparison 

to mfold. The experiment results claimed that P-

RnaPredict possess good prediction accuracy, 

especially on shorter sequences and P-RnaPredict 

succeeds in predicting structures with higher true 

positive base pair counts and lower false positives than 

mfold on specific sequences. 

 

9) Consensus: From the analysis of the proceeding 

methods, it can be seen that each of these methods has 

its advantages and disadvantages and if different 
methodologies are combined by using consensus 

algorithms, a Meta server can be built with a more 

reliable prediction and more stable performance. 

 

Pcons was the first fully automated Meta server that 

worked by collecting the outputs of six different 

publicly available protein fold recognition servers [41]. 

Pcons used a set of neural networks to predict the 

quality and accuracy of the collected models. Pcons 

was specifically trained to predict the quality of the 

final models. It allocates higher final scores to folds 
that were predicted by more than one server. All Meta 

servers made available since then work on a similar 

basis; they select their final answer from a set of 

results, using a consensus approach. The strength of 

Meta servers lies in the theory that mistakes in 

predicted models are likely to be random, while 

accurate models will occur at a frequency greater than 

random. 

 

Libo Yu developed a consensus-based server for 

protein Fold Recognition [42]. A consensus-based 

server combines the outputs of several individual 
servers and generates better predictions than any 

individual server. Libo Yu proposed a Support Vector 

Machine (SVM) regression-based consensus method 

for protein fold recognition. SVM first extracts the 

features of a structural model by comparing the model 

to the other models produced by all the individual 

servers. Then, the SVM predicts the quality of each 

model. The experimental results from several data sets 

showed that the proposed consensus method, SVM 

regression outperforms any individual server.  

 
Riccardo Lovsey describes the complete systematic 

development and benchmarking of an ensemble system 

for protein fold recognition, and examines the reasons 

behind the resultant improvements in performance 

[43]. Ensemble methods are learning algorithms that 
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construct a set of classifiers and then combine their 

individual decisions in some way to classify new 

examples. This ensemble system is designed to carry 

out a wide variety of fold recognition methods, 

searching a database of known structures. These 

methods include profile-profile, secondary structure, 
and structure-specific gapped alignment algorithms. 

These methods are optimized and tested using strictly 

selected protein data sets consisting of disparate 

subsets of the Structural Classification of Proteins 

(SCOP) database. Analyses showed that there is an 

increase in recognition accuracy due to the effect of 

‘noise filtering’ by using multiple recognition 

algorithms in a consensus approach. 

 

V. CONCLUSION  

Many researches are conducted to invent new models 

for addressing the protein folding recognition problem. 
They rely on different supporting techniques like 

Genetic algorithms, support vector machines, Hidden 

Markov models, Multi-objective evolutionary 

algorithms, data integration techniques and ensemble 

classifiers. The accuracy, energy function, fitness score 

function, and the speed are all very significant factors 

when building Protein folding recognition model. 

There are two aspects of protein fold recognition 

problem: first is the computational difficulty and 

second is that the current energy functions are still not 

accurate enough to calculate the free energy of a given 
conformation. Computational difficulty can be solved 

by parallelization of one of the evolutionary methods 

so it can give a high performance. Also ensemble 

systems are considered one of the most powerful tools 

to recognize the correct fold.  
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