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1. Introduction 
In recent years much attention has been devoted to the 

study of chordal graphs. In addition to understanding 

their intrinsic properties from a graph theoretic 

perspective, a major motivation for this research has 

been their usefulness in such diverse applied domains 

as biology, relational database design, computer 

science, matrix manipulation, psychology, scheduling, 

and genetics, e.g., [1, 2]. Graph invariants have also 

been the subject of intense research because of their 

utility for determining class membership of graphs 

and recognizing non-isomorphic graphs, e.g., [3].  
 

In this short paper a new combinatorial invariant for 

connected chordal graphs is found using the well-

established relationship between a connected chordal 

graph   and its associated  -acyclic hypergraph 

 ( ). The fact that  ( ) is  -acyclic and that  ( ) 

also generates the clique complex  ( ) of   allows a 

straightforward application of the Mayer-Vietoris 

Theorem to show that a geometric realization 𝕂 of 

 ( )  is homologically trivial. The combinatorial 

invariant for connected chordal graphs follows from 

the direct application of the Euler-Poincare formula to 

𝕂. 

 

The remainder of this paper is organized as follows: 

The relevant definitions and terminology are 

summarized in the next section. Required preliminary 

lemmas are provided in Section 3 and the main results 

are established in Section 4. A simple illustrative 
example is presented in Section 5. Closing remarks 

comprise the final section of this paper. 

2. Definitions and Terminology 

A graph   is a pair ( ( )  ( )), where  ( )  is a 

finite non-empty set of vertices and  ( ) is either a 

set of doubleton subsets of  ( ) called edges or the 

empty set  . The order of   is the cardinality of  ( ) 

and the size of   is the cardinality of  ( ) . Two 

vertices      ( )  are adjacent when   {   }  
 ( ) in which case   is said to join   and  . A  -  

walk is an alternating sequence of vertices and edges 

beginning with   and ending with   such that every 

edge joins the vertices immediately preceding and 

following it. A  -  path is a  -  walk in which no 

vertex is repeated. In this case   is said to be 

connected to  .   is connected if its order is one or if 

every two vertices in   are connected. A  -  path for 

which     and which contains at least three edges is 

a cycle. The length of a cycle is the number of edges 

contained within it and a chord of a cycle is an edge 

between nonconsecutive vertices in the cycle. 
 

A graph is a chordal graph if every cycle of length at 

least four has a chord. A graph is complete if every 

two of its vertices are adjacent. A graph   is a 

subgraph of   if  ( )   ( ) and  ( )   ( ). A 

clique in   is either a vertex or a complete subgraph 

of   and is maximal if it is not a proper subgraph of 

another clique. The order of a clique is the cardinality 

of its vertex set and the clique number  ( ) of   is 

the maximum order among the maximal cliques of  .  

A hypergraph   is a pair (   ), where   is a finite 

set of vertices and   is a set of hyperedges which are 

non-empty subsets of   (it is hereafter assumed that  

  is reduced, i.e., no hyperedge of   is a subset of 

another hyperedge of  ). The hypergraph  ( ) 

associated with graph   has  ( ) as its vertices and 

the hyperedges of  ( ) are the sets of vertices in the 

maximal cliques of  .  ( )  is connected if    is 

connected. A connected hypergraph is  -acyclic if it 

has the (nonempty) running intersection property, i.e., 

if there is an ordering (          ) of its hyperedges 

so that for each        , there is a      such that 
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  (   (      ))     
 (note the fact that each of 

these     intersections is non-empty implies 

connectedness)  [4, 5].  

 

The closure   ( ) of a finite set   is the family of 

nonempty subsets of  . The closure   ( )  of a 

hypergraph   is the union of the closure of each of its 

hyperedges, i.e.,   ( )         ( ), and the closure 

  ( ) of a graph   is   ( )        ( ), where   

is the set of vertices in a maximal clique of   and   

is the set of all such  ’s.  

 

Let {          }  be a set of geometrically 

independent points in   . The k-simplex (or simplex) 

   spanned by {          }  is the set of points 

     for which there exist non-negative real 

numbers            such that   ∑   
 
      and 

∑   
 
       In this case {          } is the vertex 

set of   . A face of    is any simplex spanned by a 

non-empty subset of {          } . A finite 

geometric simplicial complex (or complex) 𝕂 is a 

finite union of simplices such that: (i) every face of a 

simplex of 𝕂 is in 𝕂; and (ii) the non-empty 

intersection of any two simplices of 𝕂 is a common 

face of each. The dimension    (𝕂)  of 𝕂 is the 

largest positive integer m such that 𝕂 contains an m-

simplex. The vertex scheme of 𝕂 is the family of all 

vertex sets which span the simplices of 𝕂. If {     
 } is a collection of subcomplexes of 𝕂, then        

and          are also subcomplexes of 𝕂. 

 

A finite abstract simplicial complex (or abstract 

complex) is a finite collection   of finite non-empty 

sets such that if   is in  , then so is every non-empty 

subset of  . Thus, the vertex scheme of a complex is 

an abstract complex - as are finite unions of set 

closures and finite intersections of set closures. The 

abstract complex   ( ) is called the clique complex 

 ( ) of graph  .  

 

Two abstract complexes   and   are isomorphic if 

there is a bijection   from the vertex set of  onto the 

vertex set of  such that {          }    if, and 

only if, { (  )  (  )    (  )}   . Every abstract 

complex   is isomorphic to the vertex scheme of some 

geometric simplicial complex 𝕂 – in which case 𝕂 is 

the geometric realization of   and is uniquely 
determined (up to linear isomorphism). An 

isomorphism between   and the vertex scheme of 𝕂 is 

denoted    𝕂. An edge in   is a doubleton subset of 

vertices contained in  . A distinct pair of vertices     

of   are path connected if there is an alternating 

sequence  {    }  {     } {    }  of vertices and 

edges of  . The abstract complex    is connected when 

either   has one vertex or all pairs of its vertices are 

path connected. If   is connected, then so is any 

geometric realization of  . 

 

To each (simplicial) complex 𝕂 there corresponds a 

chain complex, i.e., abelian groups   (𝕂)  and 

homomorphisms          (𝕂)    (𝕂),    . If 𝕂 

is finite and   (𝕂) is the number of  -simplices in 𝕂, 

then the rank of   (𝕂)  is   (𝕂) , i.e.,   (𝕂)  is 

isomorphic to (denoted     ) the direct sum     of 

  (𝕂) copies of the additive group of integers ℤ. The 

 th homology group of 𝕂 is the quotient group 

  (𝕂)               and its rank is the  th
 Betti 

number   (𝕂) . If 𝕂 is connected, then   (𝕂)  ℤ 

and 𝕂 is homologically trivial if it is connected and 

  (𝕂)   ,    , where   is the trivial group. The 

complex of a simplex is homologically trivial.  

 

3. Preliminary Lemmas 

 

Several lemmas are required to prove the main results 

found in the next section. The first three are well 
known and are repeated here for completeness. The 

fourth is lesser known and is due to D’Atri et al. 

 

Lemma 3.1. [6] (Euler-Poincaré) If 𝕂 is a complex of 

finite dimension, then 

 

∑ (  )    (𝕂)
     (𝕂)  ∑ (  )    (𝕂)

     (𝕂). 

 

Lemma 3.2. [7] (Mayer-Vietoris) Let 𝕂 be a complex 

with subcomplexes 𝕂  and 𝕂  such that 𝕂  𝕂  
𝕂 . Then there is an exact sequence 

 

     (𝕂  𝕂 )    (𝕂 )    (𝕂 )  

  (𝕂)      (𝕂  𝕂 )      .                  

 

Lemma 3.3. [8] Let   be an abelian group,   be a 

free abelian group, and        be a surmorphism. 

Then         . 

 

Lemma 3.4. [9] If   is a connected chordal graph, 

then  ( ) is  -acyclic. 

 

The closure operation    is also important for proving 

the main results. The following three lemmas provide 

the required key properties of   . Since the next 

lemma is straightforward, its proof has been omitted.  

Lemma 3.5. Let {      }  be a collection of non-

empty finite sets. Then the following statements are 
true: 

     (1)     if, and only if,   ( )    ( ); 

     (2)       (  )    (      ); 

     (3)       (  )    (      ); 

     (4)       if, and only if,   ( )    ( )   ; 

and 

     (5)     if, and only if,   ( )   . 

 

Lemma 3.6. If the ordering of sets (          ) has 

the running intersection property, then the ordering 

(  (  )   (  )     (  ))  also has the running 

intersection property. 

 
Proof. The proof results from use of the identity 

   (      )       (     )  in the following 
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implication chain:      (      )     
 

        (     )     
     (    (   

  ))    (   
)  (Lemma 3.5 (1),(5))     

     (  (     ))    (   
)  (Lemma 3.5 (3)) 

        (  (  )    (  ))    (   
)  (Lemma 

3.5 (2))      (  )  (      (  ))    (   
) . 

Thus, the    operation preserves the running 

intersection property.   

 

Lemma 3.7. Let the ordering of sets (          ) 

have the running intersection property. If       
(      ), then   (  )    (  )  (      (  )). 

 

Proof. Again use the identity       (      )  
    (     ) and let    . Application of Lemma 

3.5 and the definition of    provides the following 

biconditional chain and completes the proof:   
  (  )                for some      
    (     ) for some               (   

  )         (  (  )    (  ))       (  )  

(      (  )). 

 

4. Main Results 

 

Lemma 4.1.   ( ( ))  and  ( )  are identical 

abstract complexes. 

 

Proof. By definition each hyperedge   in  ( ) is the 

vertex set   of a maximal clique in   so that   ( )  
  ( )  (Lemma 3.5 (1)). Because of this one-to-one 

correspondence between hyperedges and maximal 

cliques, it must therefore be the case that   ( ( ))  

      ( )        ( )    ( )   ( ). 
 

Corollary 4.2.   ( ( ))  and  ( )  have the same 

geometric realizations. 

 

Proof. Let 𝕂  be the geometric realization of 

  ( ( ))  in which case   ( ( ))  𝕂 . Since 

 ( )    ( ( )) (Lemma 4.1), it must also be the 

case that  ( )  𝕂. 

 

Lemma 4.3. Let   be a connected chordal graph, 
(          )  be an ordering of the hyperedges of 

 ( ) which exhibit the running intersection property, 

and 𝕂 be a geometric realization of  ( ). Then: 

    (1) there is a subcomplex 𝕂  of a simplex in 𝕂 such 

that   (  )  𝕂 ; 

    (2) the subcomplex    of  𝕂   such that 

      (  )     is connected;  

    (3) 𝕂     is the complex of a simplex of 𝕂; and 

    (4) 𝕂     is a connected subcomplex of 𝕂. 

 
Proof. Item (1) follows from Corollary 4.2; the one-to-

one correspondence between maximal cliques in   

and hyperedges in  ( ) ; the fact that for each 

hyperedge    there is a set   of maximal clique 

vertices spanning a simplex in 𝕂 such that      

  (  )    ( ) (Lemma 3.5 (1)); and that the abstract 

complexes   (  )    ( )  are therefore both 

isomorphic to the vertex scheme of the same simplex. 

Item (2) follows from an induction argument on     

and the running intersection property’s nonempty 

condition   (  (  )  (      (  ))) , along with 

the one-to-one correspondence between hyperedges 

and vertex sets of maximal cliques. Item (3): Since 𝕂  

and    are subcomplexes of 𝕂 , then so is 𝕂    . 

Because  ( ) has the running intersection property, 

along with Lemma 4.1,  Corollary 4.2, and Lemma 

3.7, it follows that   (  (  )  (      (  )))  

𝕂    . But (  (  )  (      (  )))    (   
)  for 

some     (Lemma 3.6). Since   (   
) is isomorphic 

to the vertex scheme for the complex of a simplex in 

𝕂, then (  (  )  (      (  ))) is isomorphic to the 

vertex scheme of this complex of a simplex or to the 

complex of one of its faces. In either case, 𝕂     is a 

complex of a simplex of 𝕂. Item (4): Since 𝕂  and    

are subcomplexes of 𝕂, then so is 𝕂    . Also, since 

𝕂  and    are connected (items (1) and (2)) and 

𝕂  and    have the complex of a simplex in common 

(item (3)), then 𝕂     must be connected. 

 

Theorem 4.4. If   is a connected chordal graph and 

𝕂  is a geometric realization of  ( ) , then 𝕂  is 

homologically trivial. 
 

Proof. Since 𝕂 is a geometric realization of  ( ), it is 

also a geometric realization of   ( ( )) (Corollary 

4.2) and since   is a connected chordal graph, then 

 ( )  is an  -acyclic hypergraph (Lemma 3.4). 

Consequently, there is an ordering (          )  of 

the hyperedges of  ( )  which exhibit the running 

intersection property. Let 𝕂  and      {       } , 

be subcomplexes of 𝕂 such that  

  

  (  )  𝕂  and        (  )    , 

 

in which case 𝕂     is the complex of a simplex 

(Lemma 4.3 (3)) and 𝕂          is a connected 

complex (Lemma 4.3 (4)). It follows that there is an 

associated exact sequence (Lemma 3.2) 

 

     (𝕂    )    (𝕂 )    (  )  

  (    )      (𝕂    )    . 

 

Since 𝕂  and 𝕂     are complexes of simplices 

(Lemma 4.3 (1) and (3)), then for      

 

  (𝕂 )    (𝕂    )    

 

and for     

 

    (𝕂 )    (𝕂    )  ℤ . 

 

Substitution of these group isomorphisms into the 

above exact sequence induces the following two 
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relevant exact sequences: 

 

    (  )    (    )        (   ) 

and 

      (  )    (    )
 
 ℤ

 
 ℤ    (  )

 
   (    )      . 

 

Since     is arbitrary, the exactness of the first 

induced sequence provides the isomorphism chain 

 

  (  )    (  )      (    )    (𝕂)    (  

 )                      
 

However, for    ,   (  )    (because    is the 

complex of a simplex) and it is concluded from the 

isomorphism chain that  

 

  (𝕂)       (   )   

 

The exactness of the second induced sequence insures 

that   is a surmorphism. Also, since      is connected 

(Lemma 4.3 (4)), then   (    )  ℤ  and it is 

therefore a free abelian group. It follows from this, the 

fact that ℤ    (  ) is abelian, and Lemma 3.3 that 

 

ℤ    (  )          (    )        ℤ . 

 

Using the fact that   (  )  ℤ  (because    is a 

connected complex) and            (from the 
exact ness of the sequence) in the last expression 

yields 

 

ℤ  ℤ        ℤ 
 

which implies that      ℤ . Thus,   is a 

monomorphism so that              and 

exactness at ℤ in the second sequence yields the exact 
sequence 

 

    (  )    (    )
 
   

which reveals that 

 

  (  )    (    )  
 

Since     is arbitrary, the following isomorphism 

chain holds: 
 

  (  )    (  )      (    )    (𝕂) . 

 

It can be concluded from this that since    is the 

complex of a simplex (because   (  )     and 

Lemma 4.3 (1)), then   (  )    and 

 

  (𝕂)   . 

 

Consequently, 𝕂  is homologically trivial since it is 

connected (Lemma 4.3 (4)) and   (𝕂)   ,    . 

 

Theorem 4.5. If   is a connected chordal graph and 

  ( ) is the number of cliques of order   in  , then 

 

∑ (  )    ( )
     ( )   . 

 

Proof. Let 𝕂 be a geometric realization of the clique 

complex of  . Since   is connected and chordal, then 

from Theorem 4.4, 𝕂  is homologically trivial. This 

implies that   (𝕂)    and   (𝕂)       , in 

which case Lemma 3.1 yields 

 

∑ (  )    (𝕂)
     (𝕂)   . 

 

The one-to-one correspondence between the     

dimensional simplices of 𝕂 and the cliques of order   

in   implies     (𝕂)    ( )  and    (𝕂)  
 ( )   . The proof is completed by using these 

identities in the last expression and resuming over 

       ( ). 

 

5. Example 

     
     In order to illustrate the theory developed above, 

consider the connected chordal graph  , its associated 

hypergraph  ( ) , and a geometric realization of 

 ( )    ( ( )) shown in Figure 1. By inspection 

it is seen that  ( )     the hyperedges of  ( ) are 

   {       }     {     }    {   }; and  ( ) 

is  -acyclic since the hyperedge ordering (        ) 

exhibits the (nonempty) running intersection property, 

i.e., 

 

   (      )     (     )
 {   }  {         }  { }     

and 

   (      )        {     }  {       }
 {   }       

The closures of these hyperedges are 

 

  (  )   

{{       } {     } {     } {     } {     } {   } {   } {   } {   } {   } {   } { } { } { } { }}  
 

  (  )  {{     } {   } {   } {   } { } { } { }}  
and 

  (  )  {{   } { } { }} 

(these closures are easily seen to validate Lemma 3.6). Since  ( )    ( ( ))    (  )    (  )    (  ), 

then the clique complex of   is the set 

 



 

 

http://www.ijSciences.com Volume 2, Issue July 2013 

 

100 

 ( )   

{
{       } {     } {     }{     } {     } {     } {   } {   } {   } {   } {   } {   } {   } 

{   } {   } { } { } { } { } { } { }
}  

 

  Figure 1. A chordal graph  , its associated hypergraph  ( ), and a geometric realization of  ( ). 

 
Theorem 4.4 is validated by observing that since it 

contains no “holes”, the geometric realization of  ( ) 

in Figure 1 is homologically trivial (or somewhat 

more formally, there are no linear combinations of  -

simplices in  ( )  which form  -cycles that enclose 

“holes”). Theorem 4.5 is validated since by inspection 

it is easily determined that   ( )      ( )    
  ( )     and   ( )    in which case 

 

∑ (  )     ( ) 
              . 

 

6. Concluding Remarks 

 

It has been shown that any connected chordal graph 

has a clique complex that is isomorphic to the vertex 

scheme of (up to linear isomorphism) a unique  

homologically trivial geometric realization. As a 

consequence of this, the Euler-Poincaré formula 

provides a combinatorial invariant based simply upon 

the number of cliques in the graph and whose unit 

value holds for all connected chordal graphs. 

Accordingly, the contrapositive version of Theorem 

4.5 serves to determine when a graph is not a 
connected chordal graph. 

 

It is also interesting to note that since a tree is a 

connected chordal graph, then Theorem 4.5 subsumes 

the well-known fact that if a graph is a tree, then the 

difference between its order and its size is one (more 

specifically, if G is a tree, then  ( )   ,   ( ) is its 

order, and   ( )    ( )    is its size so that 

∑ (  )    ( )
     ( )    ( )    ( )    ( )  

(  ( )   )   )  

Acknowledgments 

This work was supported by a grant from the Naval 

Surface Warfare Center Dahlgren Division’s In-house 

Laboratory Independent Research program.  

References  

1. McKee, T.; McMorris, F. Topics in Intersection Graph 

Theory; Society for Industrial and Applied Mathematics: 

Philadelphia, PA, USA, 1999. 

2. Roberts, F. Discrete Mathematical Models with 

Application to Social, Biological, and Environmental Problems; 

Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1976.   

3. Brigham, R.; Dutton, R. A compilation of relations 

between graph invariants. Networks 1985, 15, pp. 73-107. 

4. Beeri, C.; Fagin, R.; Maier, D.; Yannakakis, M. On the 

Desirability of Acyclic Database Schemes. Journal of the 

Association for Computing Machinery 1983, 30, pp. 479-513.  

5.    Fagin, R. Degrees of Acyclicity for Hypergraphs and Relational 

Database Schemes. Journal of the Association for Computing 

Machinery 1983, 30, pp. 514-550.    

6. Hocking, J.; Young, G. Topology; Addison-Wesley: 

Reading, MA, USA, 1961; p. 242.   

7. Munkres, J. Elements of Algebraic Topology; Addison-

Wesley: Reading, MA, USA, 1984; p. 142.   

8. Rotman, J. An Introduction to the Theory of Groups; 

Allyn and Bacon, Boston, MA, USA, 1984; p. 254.   

9. D’Atri, A.; Moscarini, M. On Hypergraph Acyclicity and 

Graph Chordality. Information Processing Letters 1988, 29, pp.271-

274.

 


