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Abstract: Brief review of literature of the well documented seasonal Box-Jenkins modelling is done. Rainfall is a 

seasonal phenomenon the world over. For illustrative purposes, monthly rainfall as measured in Port Harcourt, 

Nigeria, is modelled by a (5, 1, 0)x(0, 1, 1)12 seasonal ARIMA model. The  time-plot shows no noticeable trend. The 

known and expected seasonality is clear from the plot. Seasonal (i.e. 12-point) differencing of the data is done, then 

a nonseasonal differencing is done of the seasonal differences. The correlogam of the resultant series reveals the 

expected 12-monthly seasonality, and the involvement of a seasonal moving average component in the first place 
and a nonseasonal autoregressive component of order 5. Hence the model mentioned above. The adequacy of the 

modelled has been established.     
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1. Introduction 

 
A time series is defined as a set of data collected 

sequentially in time. It has the property that 

neighbouring values are correlated and this tendency 

is called autocorrelation. A time series is said to be 

stationary if it has a constant mean and variance. 

Moreover the autocorrelation is a function of the lag 

separating the correlated values and is called the 

autocorrelation function (ACF).  

A stationary time series {Xt} is said to follow an 

autoregressive moving average model of orders p 

and q (designated ARMA(p, q)) if it satisfies the 

following difference equation 

Xt - 1Xt-1 - 2Xt-2 - … - pXt-p = t + 1t-1 + 2t-2 + 

… + qt-q                (1) 

Or 

A(L)Xt = B(L)t   (2) 

where {t}is a sequence of random variables with 
zero mean and constant variance, called a white noise 

process, and the i’s and j’s constants; A(L) =  1- 

1L - 2L
2 - … - pL

p and B(L) = 1 + 1L + 2L
2 + 

… + qL
q and L the backward shift operator defined 

by LkXt = Xt-k.  

 If p = 0, the model (1) becomes a moving average 

model of order q (designated MA(q)). If, however, q 

= 0 it becomes an autoregressive process of order p 

(designated AR(p)). Besides stationarity, invertibility 

is another important necessity for a time series. It 
ensures the uniqueness of the model  covariance 

structure and, therefore,  allows for meaningful 

expression  of current events in terms of  the past 

history of the series [1]. 

An AR(p) model may be more specifically written as  

Xt + p1Xt-1 + p2Xt-2 + … + ppXt-p = t  

The sequence of the last coefficients {ii} is called 
the partial autocorrelation function (PACF) of {Xt}. 

The ACF of an MA(q) model cuts off after lag q 

whereas that of an AR(p) model is a combination of 

sinusoidals dying off slowly. On the other hand the 

PACF of an MA(q) model dies off slowly whereas 

that of an AR(p) model cuts off after lag p. AR and 

MA models are known to exhibit some duality 

relationships.  

Parametric parsimony consideration in model 

building entails the use of the mixed ARMA fit in 

preference to either the pure AR or the pure MA fit. 

Conditions for stationarity and invertibility for model 

(1) or (2) are that the equations A(L) = 0 and B(L) =0 

should have roots outside the unit circle respectively.  

Often, in practice, a time series is non-stationary. Box 

and Jenkins [1] proposed that differencing of 

appropriate order could make a non-stationary series 

{Xt} to become stationary. Let degree of differencing 
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necessary for stationarity be d. Such a series {Xt} 

may be modeled as 

A(L)dXt = B(L)t  (3) 

where  = 1 - L and in which case A(L)d = 0 shall 
have unit roots d times. Then differencing to degree d 

renders the series stationary. The model (3) is said to 

be an autoregressive integrated moving average 

model of orders p, d and q and designated ARIMA(p, 

d, q). 

2.  Seasonal ARIMA Models 

A time series is said to be seasonal of order d if there 

exists a tendency for the series to show periodic 

behaviour after every time interval d. The time series 

{Xt} is said to follow a multiplicative (p, d, q)x(P, D, 

Q)s seasonal ARIMA model if 

A(L)(Ls)dD
sXt = B(L)(Bs)t     (4) 

where  and  are polynomials of order P and Q 
respectively. That is, 

(Ls) = 1 + 1L
s + … + PLsP                         (5) 

(Ls) = 1 + 1L
s + … + qL

sQ                        (6) 

where the i and the j are constants such that the 
zeros of the equations (5) and (6) are all outside the 

unit circle for stationarity or invertibility respectively. 

Equation (5) represents the autoregressive operator 

whereas (6) represents the moving average operator. 

Here s = 1 – Ls. 

Existence of a seasonal nature is often evident from 

the time plot. Moreover for a seasonal series the ACF 

or correlogram exhibits a spike at the seasonal lag. 

Box and Jenkins[1] and Madsen [2]  and Etuk[3] are 

a few authors that have written extensively on such 

models. A knowledge of the theoretical properties of 

the models provides basis for their identification and 

estimation.  

The purpose of this paper is to fit a seasonal ARIMA 

model to the Port Harcourt monthly rainfall totals. 

Osarumwense[4] has modelled the quarterly rainfall 

data as a (0, 0, 0)x(2, 1, 0)4 seasonal ARIMA model.  

Olofintoye and Sule[5] fitted the trend line y = 

0.3903x – 587.5125 which is indicative of a positive 

trend for rainfall.  A few other researchers who have 

published research results on Port Harcourt rainfall 

are Chiadikobi et al.[6], Dike and Nwachukwu[7] and 

Salako[8].  

3. Materials and Methods 

The data for this work are monthly rainfall totals  

from 1990 to 2006 obtainable from the 

meteorological centre of Port Harcourt International 

Airport.  

3.1. Determination of the orders d, D, P, q and Q: 

Seasonal differencing is necessary to get rid of  the 

seasonal trend. If there is secular trend non-seasonal 

differencing will be necessary to remove it. In order 

for the model not to be too complicated it has been 

advised that orders of differencing d and D should 

add up to at most 2 (i.e. d + D < 3).  The involvement 

of a seasonal AR component is suggestive if the ACF 

of the differenced series has a positive spike at the 
seasonal lag; if, however, it has a negative spike at 

the seasonal lag then a seasonal MA term is 

suggestive. 

As already mentioned above, an AR(p) model has a 

PACF which truncates at lag p and an MA(q) has an 

ACF which  truncates at lag q. In practice 2/n 
where n is the sample size are the non-significance 

limits for both functions. 

3.2. Model Estimation 

The fact that items of a white noise process are 

involved in an ARIMA model entails a nonlinear 

iterative process in the estimation of the parameters. 

An optimization criterion like least error sum of 
squares, maximum likelihood or maximum entropy is 

used. An initial estimate is usually chosen. Each 

iterative step is expected to be an improvement of the 

last one until the estimate converges to an optimal 

one. However, for pure AR and pure MA models 

linear optimization techniques exist (See for example, 

Box and Jenkins[1], Oyetunji[9]. There are efforts to 

propose and adopt linear methods to estimate ARMA 

models (See for example, Etuk[10, 11]. We shall use 

Eviews software which employs the least squares 

approach involving nonlinear iterative techniques. 

3.3. Diagnostic Checking 

The estimated model  should be tested for goodness-

of-fit. This shall be done by  some analysis of the 

residuals of the model. Should the model be correct, 
the residuals would be uncorrelated and would follow 

a normal distribution with mean zero and constant 

variance. The autocorrelations of the residuals should 

not be significantly different from zero. 

4. Results and Discussion 

The time plot of the original series RAINFALL in 

Figure 1 shows seasonality as expected but no  

secular trend. Seasonal (i.e. 12-month)  differencing 

of the series produces a series SDRAINFALL with  

seasonality (see Figure 2). Non-seasonal differencing 

of SDRAINFALL yields a series DSDRAINFALL 

with seasonality (See Figure 3). Its ACF in Figure 4 

has a negative spike at lag 12 revealing a seasonality 

of lag 12 and a seasonal MA component of order one 



http://www.ijSciences.com Volume 2, Issue July 2013 
 

62 

to the model. The PACF shows spikes at the first five 

lags suggesting a non-seasonal AR component of 

order five. We therefore propose the seasonal model 

Xt + 1Xt-1+2Xt-2+ 3Xt-3+ t-4Xt-4+ 5Xt-5 = t + 

12t-12                                                             (7) 

where X = DSDRAINFALL. The estimation of the 

model is summarized in Table 1. The fitted model is 

given by 

Xt +  0.84Xt-1 + 0.67Xt-2 + 0.62Xt-3+ 0.45Xt-4+ 0.23Xt-

5 = t – 0.89t-12 

All coefficients are significantly different from zero, 

each being larger than twice its standard error. As 

high as 72% of the variation in DSDRAINFALL is 

explained by the model.  In Figure 5, the fitted model 

agrees closely with the actual data. In Figure 6, the 

correlogram of the residuals indicates model 

adequacy since virtually all the autocorrelations are 

non-significant. 

5. Conclusion 

 The literature of seasonal Box-Jenkins modelling is 

briefly reviewed. A (5, 1, 0)x(0, 1, 1)12 seasonal 

autoregressive integrated moving average  model is 
fitted to rainfall data in Port Harcourt. The model has 

been shown to be adequate. 
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FIGURE 4: CORRELOGRAM OF DSDRAINFALL 
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FIGURE 6: CORRELOGRAM OF RESIDUALS 


