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Abstract: Brief review of literature of the well documented seasonal Box-Jenkins modelling is done. Rainfall is a
seasonal phenomenon the world over. For illustrative purposes, monthly rainfall as measured in Port Harcourt,
Nigeria, is modelled by a (5, 1, 0)x(0, 1, 1), seasonal ARIMA model. The time-plot shows no noticeable trend. The
known and expected seasonality is clear from the plot. Seasonal (i.e. 12-point) differencing of the data is done, then
a nonseasonal differencing is done of the seasonal differences. The correlogam of the resultant series reveals the
expected 12-monthly seasonality, and the involvement of a seasonal moving average component in the first place
and a nonseasonal autoregressive component of order 5. Hence the model mentioned above. The adequacy of the

modelled has been established.
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1. Introduction

A time series is defined as a set of data collected
sequentially in time. It has the property that
neighbouring values are correlated and this tendency
is called autocorrelation. A time series is said to be
stationary if it has a constant mean and variance.
Moreover the autocorrelation is a function of the lag
separating the correlated values and is called the
autocorrelation function (ACF).

A stationary time series {X} is said to follow an
autoregressive moving average model of orders p
and q (designated ARMA(p, q)) if it satisfies the
following difference equation

Xi - o Xeq = 0pXip - ... = OpXep = & + P1&ra + Pocra +
oo+ Botig M

Or

A(L)X; = B(L)e 2

where {&}is a sequence of random variables with
zero mean and constant variance, called a white noise
process, and the o;’s and B;’s constants; A(L) = 1-
il - opl? - ... - opl? and B(L) = 1 + Byl + BL° +
... + BgL* and L the backward shift operator defined
by LX; = X«

If p = 0, the model (1) becomes a moving average
model of order g (designated MA(Q)). If, however, q
= 0 it becomes an autoregressive process of order p
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(designated AR(p)). Besides stationarity, invertibility
is another important necessity for a time series. It
ensures the uniqueness of the model covariance
structure and, therefore, allows for meaningful
expression of current events in terms of the past
history of the series [1].

An AR(p) model may be more specifically written as
Xt + aplxt.l + apzxt.z + ...+ ocprt.p =&t

The sequence of the last coefficients {a;} is called
the partial autocorrelation function (PACF) of {Xt}.
The ACF of an MA(q) model cuts off after lag g
whereas that of an AR(p) model is a combination of
sinusoidals dying off slowly. On the other hand the
PACF of an MA(q) model dies off slowly whereas
that of an AR(p) model cuts off after lag p. AR and
MA models are known to exhibit some duality
relationships.

Parametric parsimony consideration in model
building entails the use of the mixed ARMA fit in
preference to either the pure AR or the pure MA fit.
Conditions for stationarity and invertibility for model
(1) or (2) are that the equations A(L) = 0 and B(L) =0
should have roots outside the unit circle respectively.

Often, in practice, a time series is non-stationary. Box
and Jenkins [1] proposed that differencing of
appropriate order could make a non-stationary series
{Xt} to become stationary. Let degree of differencing
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necessary for stationarity be d. Such a series {Xt}
may be modeled as

A(L) VX, = B(L)g, (3)

where V = 1 - L and in which case A(L)V® = 0 shall
have unit roots d times. Then differencing to degree d
renders the series stationary. The model (3) is said to
be an autoregressive integrated moving average
model of orders p, d and g and designated ARIMA(p,

d, q).
2. Seasonal ARIMA Models

A time series is said to be seasonal of order d if there
exists a tendency for the series to show periodic
behaviour after every time interval d. The time series
{X} is said to follow a multiplicative (p, d, q)x(P, D,
Q)s seasonal ARIMA model if

AL)D(L)VVPX, = B(L)O(B)e: (4)

where ® and © are polynomials of order P and Q
respectively. That is,

DL =1+ p L+ ...+ ppl™ (5)
OL) =1+0,L°+ ... +0,L® (6)

where the ¢; and the 6; are constants such that the
zeros of the equations (5) and (6) are all outside the
unit circle for stationarity or invertibility respectively.
Equation (5) represents the autoregressive operator
whereas (6) represents the moving average operator.
Here Vy=1-L°

Existence of a seasonal nature is often evident from
the time plot. Moreover for a seasonal series the ACF
or correlogram exhibits a spike at the seasonal lag.
Box and Jenkins[1] and Madsen [2] and Etuk[3] are
a few authors that have written extensively on such
models. A knowledge of the theoretical properties of
the models provides basis for their identification and
estimation.

The purpose of this paper is to fit a seasonal ARIMA
model to the Port Harcourt monthly rainfall totals.
Osarumwense[4] has modelled the quarterly rainfall
data as a (0, 0, 0)x(2, 1, 0), seasonal ARIMA model.
Olofintoye and Sule[5] fitted the trend line y =
0.3903x — 587.5125 which is indicative of a positive
trend for rainfall. A few other researchers who have
published research results on Port Harcourt rainfall
are Chiadikobi et al.[6], Dike and Nwachukwu[7] and
Salako[8].

3. Materials and Methods

The data for this work are monthly rainfall totals
from 1990 to 2006 obtainable from the
meteorological centre of Port Harcourt International

Airport.
3.1. Determination of the orders d, D, P, g and Q:

Seasonal differencing is necessary to get rid of the
seasonal trend. If there is secular trend non-seasonal
differencing will be necessary to remove it. In order
for the model not to be too complicated it has been
advised that orders of differencing d and D should
add up to at most 2 (i.e. d + D < 3). The involvement
of a seasonal AR component is suggestive if the ACF
of the differenced series has a positive spike at the
seasonal lag; if, however, it has a negative spike at
the seasonal lag then a seasonal MA term is
suggestive.

As already mentioned above, an AR(p) model has a
PACF which truncates at lag p and an MA(q) has an
ACF which truncates at lag g. In practice +2/vn
where n is the sample size are the non-significance
limits for both functions.

3.2. Model Estimation

The fact that items of a white noise process are
involved in an ARIMA model entails a nonlinear
iterative process in the estimation of the parameters.
An optimization criterion like least error sum of
squares, maximum likelihood or maximum entropy is
used. An initial estimate is usually chosen. Each
iterative step is expected to be an improvement of the
last one until the estimate converges to an optimal
one. However, for pure AR and pure MA models
linear optimization techniques exist (See for example,
Box and Jenkins[1], Oyetunji[9]. There are efforts to
propose and adopt linear methods to estimate ARMA
models (See for example, Etuk[10, 11]. We shall use
Eviews software which employs the least squares
approach involving nonlinear iterative techniques.

3.3. Diagnostic Checking

The estimated model should be tested for goodness-
of-fit. This shall be done by some analysis of the
residuals of the model. Should the model be correct,
the residuals would be uncorrelated and would follow
a normal distribution with mean zero and constant
variance. The autocorrelations of the residuals should
not be significantly different from zero.

4. Results and Discussion

The time plot of the original series RAINFALL in
Figure 1 shows seasonality as expected but no
secular trend. Seasonal (i.e. 12-month) differencing
of the series produces a series SDRAINFALL with
seasonality (see Figure 2). Non-seasonal differencing
of SDRAINFALL vyields a series DSDRAINFALL
with seasonality (See Figure 3). Its ACF in Figure 4
has a negative spike at lag 12 revealing a seasonality
of lag 12 and a seasonal MA component of order one
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to the model. The PACF shows spikes at the first five
lags suggesting a non-seasonal AR component of
order five. We therefore propose the seasonal model

Xi + o XpatooXeot ogXest oaXeat dsXes = g +
[31281-12 (7)

where X = DSDRAINFALL. The estimation of the
model is summarized in Table 1. The fitted model is
given by

Xi+ 0.84Xi 1+ 0.67X;, + 0.62X;3+ 0.45X 4+ 0.23X,.
5= g — 0.89&.1»

All coefficients are significantly different from zero,
each being larger than twice its standard error. As
high as 72% of the variation in DSDRAINFALL is
explained by the model. In Figure 5, the fitted model
agrees closely with the actual data. In Figure 6, the
correlogram of the residuals indicates model
adequacy since virtually all the autocorrelations are
non-significant.

5. Conclusion

The literature of seasonal Box-Jenkins modelling is
briefly reviewed. A (5, 1, 0)x(0, 1, 1);, seasonal
autoregressive integrated moving average model is
fitted to rainfall data in Port Harcourt. The model has
been shown to be adequate.
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Autocorrelation Partial Correlation AC PAC Q-Stat

Prob

-0.570 -0.570
0.189 -0.202
-0.186 -0.266
0.054 -0.271
-0.003 -0.210
0.054 -0.111
-0.056 -0.144
0.009 -0.167
0.055 -0.030
10 -0.112 -0.159
11 0281 0.253
12 -0.420 -0.158
13 0.280 -0.095
14 -0.184 -0.139
15 0174 -0.101
16 -0.060 -0.057
17 0.050 -0.010
18 -0.132 -0.114
19 0.115 -0.053
20 -0.103 -0.155
21 0135 0.027
22 -0.115 -0.166
23 0179 0.363
24 -0.222 -0.11%
25 0.047 -0.116
26 0.047 -0137
27 -0.058 -0.206
26 0.111 -0.082
29 -0.070 0.0M1
30 0.036 -0.101
31 -0.086 -0.124
32 0199 0.063
33 -0.265 -0.014
34 0244 -0.042
35 -0.285 0133
36 0.254 -0.140

D 00 = O M = L) R —
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FIGURE 4: CORRELOGRAM OF DSDRAINFALL
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Dependent Varniable: DSDEAIMFALL
Method: Least Squares

Date: 03/056/M12 Time: 20:51
Sample(adjusted): 1991:07 2006:12

Included observations: 186 after adjusting endpoints
Convergence achieved after 19 iterations

Backcast: 1990:07 1991:06

1000

300 4
200 4
100 -

Wariable Coefficient Std. Error  t-Statistic Frob.
ARI(1) -0.8396591 0.057295  -14.65545 0.0000
ARIZ2) -0.671853 0.070072 -9.587996 0.0000
ARI(3) -0.622000 0.073157 -B.502286 0.0000
AR4) -0.449151 0.069994  -6.417028 0.0000
AR(E) -0.229516 0.058884  -3.897737 0.0001
MA12) -0.885785 0.000120 -7376.413 0.0000
R-squared 0.715492 Mean dependent var -0.897349
Adjusted R-squared 0.707589 S.D. dependent var 153.9822
S.E. of regression 83.26588 Akaike info criterion 11.71368
Sum sguared resid 1247977,  Schwarz criterion 11.81774
Log likelihood -1083.372  F-statistic 90.53437
Durbin-VWatson stat 2122132  Prob(F-statistic) 0.000000
Inverted AR Roots 344+ T30 34 - T3 - 394 &Ti -39 - &Ti
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Date: 03/31M12 Time: 15:45
Sample: 1991:07 2006:12
Included observations: 186

(-statistic probabilities adjusted for 6 ARMA term(s)

Autocorrelation Partial Correlation
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FIGURE 6: CORRELOGRAM OF RESIDUALS
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