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Abstract: in this article we present an alternative method for extrapolation of Land Surface Temperature (LST) by 

means of Artificial Neural Networks (ANNs) based on positional variables (UTM coordinates and altitude), 

temperature and average air relative humidity. The study region was the Rio dos Sinos Hydrographic Basin (RSHB), 

Rio Grande do Sul, Brazil. For ANN training we used an NOAA-14/AVHRR satellite thermal image, with pixels 

size 1 x 1 km, with known information of LST on January 29, 2003. Various settings were tested in ANN training 

step, the one that presented the best performance was composed of only one intermediate layer (with 4 neurons and 

logistic sigmoid activation function). The trained network was validated with 2 simulations: in the first simulation 

we extrapolate the LST values of April 11, 2003 and in the second simulation we extrapolate LST values of October 

15, 2003. The results of the simulations were compared with Split Window (SW) algorithm and the average 

discrepancies found between both models were of -0.30° C and 0.26° C, respectively, of April 11, 2003 and October 

15, 2003. A strong correlation was found between both models with R2 values exceeding 0.93 and statistically we 

checked that there was no difference between the LST averages values   obtained by ANN and SW for 5% 
significance level.  
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1. Introduction 

The Land Surface Temperature (LST) constitutes a 

phenological parameter notably influenced by climate 

variations and plant water status indicator. So, its 

estimate is useful in monitoring work to ensure the 

need of crop water demand, contributing significantly 

in many environmental processes (Silva, 2007; 
Weng, Lu & Schubring, 2004). 

 

The LST has frequently been the subject of research 

into scientific papers (Mallick et al., 2008; Sandholt 

et al., 2002; Lambin & Ehrlich, 1995; Moran et al., 

1994; Gupta et al., 1997;Czajkowski & Sobrino, 

2002; Becker & Li 1990; Kerr et al., 1992; Ulivieri et 

al., 1994; Sobrino et al., 1994) and very important for 

various applications in meteorology and studies of 

natural resources mainly in the structuring of energy 

balance models, biophysical and bioclimatic surface 
parameters (Brunsell & Gillies, 2003; Karnieli et al., 

2010; Kustas & Anderson, 2009; Zhang et al., 2008) 

and was recognized as a high-priority parameter of 

the International Geosphere and Biosphere Program 

(IGBP) (Townshend et al., 1994). 

 

In remote sensing, Thermal infrared (TIR) sensors 

can obtain quantitative information of LST and there 

are many available thermal infrared sensors to study 

LST. The Geostationary Operational Environmental 

Satellite (GOES) has a 4-km resolution in the termal 

infrared, while the NOAA-Advanced Very High 

Resolution Radiometer (AVHRR), Terra and Aqua-

Moderate Resolution Imaging Spectroradiometer 

(MODIS) have 1-km spatial resolution. High 

resolution data from the Terra-Advanced Spaceborne 

Thermal Emission and Reflection Radiometer 
(ASTER) has a 90-m resolution and Landsat-7 

Enhanced Thematic Mapper (ETM+) has a 60-m 

resolution in thermal region (Li, z.-l. et al., 2013). 

 

The AVHRR is among the most used for the agro-

meteorological monitoring and climate studies by 

enabling data acquisition in daily global scans, for 

having calibrated thermal spectral bands as well as 

wide data availability because of simultaneous 

operation in several meteorological satellites. From 

the various products that can be obtained through 
these data, the LST is very important  due to its great 

usefulness in agricultural monitoring, fire detection, 

sea surface state monitoring, and in the studies of 

climate change (Gusso & Fontana, 2007; Ferreira, 

2004). 

 

Rivas (2004) advises the use of NOAA/AVHRR 

images adapted to the Split Windows equation 

(Ulivieri et al., 1994) to estimate the LST. This model 

relates both emissivity variable and atmospheric data. 
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It is a complex method because, in addition to 

statistical modeling hard, there is a need to work with 

image digital processing in the determining 

emissivity process. 

 

Few studies have not used digital image processing 

for LST modeling. In this paper we made use of 

artificial intelligence techniques by means of 

Artificial Neural Networks to determine LST (Yang 
et al., 1997; Atluri et al., 1999; George, 2001; 

Veronez et al., 2006; Mao & Shi, 2008).  

 

The ANNs are indicated for LST estimating because 

they are groupings of structured and interconnected 

processing units (neurons or nodes), they work 

analogous as neural structure of intelligent organisms 

(Müller & Fill, 2003). The ANNs extract the 

computing power of the distributed massively parallel 

structure and the ability to learn/generalize, enabling 

the resolution of complex problems (Haykin, 2001). 
 

The ANNs works based in the human brain (Haykin, 

2001) and have been successfully used in several 

areas of knowledge. Second Galvão et al. (1999), on 

the basis of non-linear structure of the ANNs is 

adquiring more complex features of the data, which is 

not always possible with the use of traditional 

statistical techniques.  

 

For Müller & Fill, (2003) the great advantage of the 

ANNs about conventional methods is that there is no 
need of the knowledge of intrinsic theory problem 

nor the need to analyze relationships that are not fully 

known among the variables involved in modeling. 

 

Despite the existence of some researches for simplify 

the data entry of an ANN in the process of estimating 

the LST, we identify that there are other options to be 

studied using climate data associated with thermal 

imaging. The objective of this study was to propose a 

ANN to extrapolate in time the LST values for all the 

Rio dos Sinos hydrographic basin/RS used as 

variables in modeling only altitude, position, 
temperature and air relative humidity.  For the ANN 

supervised training we used LST information coming 

from of an NOAA thermal image rendering of 

January 29, 2003.  

 

To validate the proposed model we generated two 

LST maps, of April 11, 2003 and October 15, 2003. 

The choice of these two images was because they are 

cloud-free and of different seasons. For these same 

days we also processed the NOAA satellite images 

and compared the discrepancies found in the values 
between of LST obtained by ANN and SW 

algorithm.  

 

2. Artificial Neural Networks (ANN) and Resilient 

Backpropagation Algorithms 

The ANN are groupings of processing units, called 

neurons or nodes, structured and interconnected, 

whose functionality is similar to a neural structure of 

intelligent organisms. The NN have a high 

computational power due to its parallel and 

distributed structure and its capacity to learn and/or 

make generalizations, what makes it possible to solve 
complex problems in a vast range of scientific 

knowledge(Haykin, 1999). 

 

In view of its non-linear structure, the ANN is 

capable to capture the most complex characteristics 

from the data, which is not always possible if one 

uses the traditional statistical techniques or other 

deterministic methods. The greatest advantage of 

neural networks over conventional methods, such as 

the statistical one, is to carry out an analysis without 

knowledge of the intrinsic theory of the matter. Other 
great advantages are to analyze relations which are 

not fully known among the variables involved in the 

modelling and use a well-established technique for 

application by the remote sensing community (Mas & 

Flores, 2008). 

 

Because of ANNs' powerful non-linear retrieval 

abilities, a number of attempts have been made to 

develop neural networks to retrieve both the surface 

and atmospheric biophysical variables without exact 

knowledge of the complex physics mechanisms (Mao 
et al., 2008;  Aires et al., 2002b; Blackwell, 2005; 

Aires et al., 2002a; Wang et al., 2010). 

The implementation of an ANN depends on its 

architecture and the training data (Mas & Flores, 

2008; Schmitt et. al., 2013). It is difficult to 

determine the architectures and learning schemes for 

an ANN, which are directly related to its ability to 

learn and generalize. Although one or two hidden 

layers are recognized to be enough for most problems 

(Aires et al., 2002b; Mas & Flores, 2008; Sontag, 

1992), a number of experiments are still required to 

determine what architecture-related parameters will 
improve the accuracy, such as the number of input 

and hidden nodes, the initial weight range, the 

activation functions, the learning rate and 

momentum, and the stopping criterion (Li, Z.-L. et 

al., 2013). 

Some authors have reported the use of improved 

variants of backpropagation method (Heermann and 

Khazenie 1992, Caorsi and Gamba 1999, Gamba and 

Belotti 2003). Backpropagation is based on a gradient 

descent method (Demuth et al., 2008), which is one 

of many techniques of nonlinear optimization.  
 

Other methods more efficient than gradient descente 

are reported in the literature. The Conjugate Gradient 

(Kanellopoulos and Wilkinson 1997, Idrissi et al. 

2004; Del Frate et al. 2002, Del Frate et al. 2003, Del 
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Frate and Solimini, 2004). The Levenberg–Marquardt 

(Schmitt et al., 2013; Veronez et al., 2011; Chang and 

Islam 2000, Faure et al. 2001, Zhang et al. 2002, 

Combal et al. 2003, Le Maire et al. 2004, Blackwell, 

2005, Muukkonen and Heiskanen 2005). A detailed 

description of these algorithms can be found in 

Haykin (1999). 

 

We chose to use the algorithm Resilient 
Backpropagation (Rprop) for modeling the LST. The 

Rprop is an algorithm that performs batch supervised 

training in multilayer perceptron-like networks. This 

algorithm works in order to eliminate the negative 

influence of the partial derivative value in the weight 

adjustment. This influence occurs because the output 

value of a neuron of approximately 0 (or 1) and the 

expected output of 1 (or 0) imply in a derivative of 

approximately 0. Thus, the weight for this neuron 

will be minimally adjusted (Braga et al., 2007). The 

Rprop is capable to eliminate this problem using just 
the signal of the derivative, not its value. The signal 

indicates the direction of the weight adjustment, 

either increasing or decreasing the previous weight. 

The range of the weight adjustment is given by the 

“actualization value” ji
t , as shown by Equation 1. 
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The is defined as an adaptation process dependent 

of the signal of the error derivative in relation with 

the weight to be adjusted, as indicated by Equation 2. 

 

  (2) 
Where: 

0 < < 1 <  

According with the rule of adaption used by Rprop, 

when the partial derivative of the error in relation to 

the weight  keeps the same sign (indicating that 
the last adjust decreased the error), the actualization 

value  increases by the factor and speeds up 

the training convergence. When the partial derivative 

changes the sign (indicating that the last adjust was 

too much), the actualization value  decreases by 

the factor  and changes the direction of 
adjustment. 

 

3. Database and Methods 

 

The study area was the Rio dos Sinos hydrographic 

basin in the State of Rio Grande do Sul as shown in 

Figure 1. 

 

                                          
 

Figure 1 -location of the study area 
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To compose the ANN training structure we chose 

randomly from our database a cloud-free image from 

the NOAA/AVHRR satellite of January 29, 2003. To 

not generate systematic errors in model is important 

the information randomness that will compose the 

training database and ANN validation. (Schmitt et al.; 

2013).  

We corrected the image radiometrically by applying 

the radiance-based procedure (Kidwell, 1998). Thus, 
we converted the values of the Digital Numbers (DN) 

in Radiance (Eq. 3) and subsequently in reflectance 

for 1 (0.58-0.68 lm) and 2 (0.725-1.10 lm) channels 

and in brightness temperatures to thermal 4 (10.3-

11.3 lm) and 5 (11.5-12.5 lm) channels.  

 

 I  DNS  B  v)j( v)j( v)j(             (3) 

  

Where: 
    Bj (ν) corresponds to radiance (mW/sr m

2
 cm

-1
); 

     Sj (ν) corresponds to angular coefficient 

calibration equation of the j channel (mW/m2 sr cm-1 

count); 

     DN corresponds to image Digital Number; 

      Ij (ν) corresponds to linear coefficient calibration 

equation of j channel (mW/m2 sr cm-1). 

  

The calibration equation coefficients contain 

information concerning to sensor response function in 

a given channel. Further details about these 
coefficients can be found in (Kidwell, 1998). 

Due to linear response lack of the AVHRR sensor, 

we carried out irradiances fixes (Eq. 4). 

 D  B . B  B . A  B j

2

 v)j(j v)j(j v)corrj(    (4) 

  

Where: 

         Bj (ν) corr corresponds to corrected radiance 
(mW/sr m2 cm-1 ); 

         Thej, Bj and Dj correspond to correction 

coefficients for a given j channel, due to AVHRR 

sensor linearity lack. 

  

The Aj,  Bj, and Dj coefficients, in the case of the 

NOAA-14 satellite, assume values equal to 0.92378; 

0.0003822 and 3.72, respectively, for AVHRR 4 

channel (Kidwell, 1998). For 5 channel these values 

are equal to 0.96194; 0.0001742 and 2.00, 

respectively. The conversion of radiance in 

brightness temperature for a given temperature range 
(265 to 320 k) is given by the equation 5: 

  

 
B
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
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Where: 

Tbj corresponds to j channel brightness temperature; 

νj corresponds to j channel wave number; 

Bj (ν) corr corresponds to corrected radiance according 

to equation (4). 
  

To estimate the Land Surface Temperature various 

SW algorithms (Dash et al., 2002) were developed by 

authors that use the AVHRR sensor information: 

AVHRR in NOAA-7 (price, 1984), AVHRR in 

NOAA-9 (Becker and Li, 1990), AVHRR in NOAA-

11 (Sobrino et al., 1991), etc. The filter functions for 

4 and 5 channels of the AVHRR slightly differ for 

each other sensor from the NOAA satellite series 

leading coefficients different for the SW model. This 

fact can lead to a considerable error in Land Surface 
Temperature estimation of approximately 2.3 K 

(Czajkowski et al., 1998). 

 

We utilized the 4 and 5 NOAA-14/AVHRR satellite 

channels with the SW model coefficients 

(Czajkowski et al., 1998) to generate the LST image 

(Eq. 6) for the study area and used for ANN training. 

It is important take every care in the process of image 

calibrating.  An calibration imperfect can cause an 

error of 0.3 K in Land Surface Temperature 

determining (Cooper & Asrar, 1989) and the surface 

emissivity variations (approximately 2%) can provide 
an error of 1 K (Ottle lid and Vidal-Madjar, 1992).  

  

 544 08,254,5 TTTTs     (6) 

Where: 

            is the Land Surface Temperature; 

            and    match brightness temperatures of 

the 4 and 5 AVHRR channels, respectively, both in  

Kelvin. 

  

We georeferenced the image of LST to the Universal 

Transverse Mercator (UTM) projection system and 
Hayford ellipsoid using 15 checkpoints in the ground. 

The root mean square error adjustment  was of 

approximately 1 pixel. Figure 2 show the processed 

image with the values of LST.
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Figure 2 -NOAA image processed with Rio dos Sinos hydrographic basin LST information of January 29, 2003. 

Hayford ellipsoid, UTM projection and central meridian 51° W 

 

With the processed image and georeferenced we 

overlay on a terrain digital model obtained from level 

curves with a 20 m vertical equidistance. Thus to the 

centroid of each pixel in the rendered image we 

extracted the following variables to the ANN 

structure: UTM coordinates (East, North, and 
altitude) and LST. 

 

We used an ANN structure of type Perceptron 

multilayer that is based on learning by error 

correction. When a pattern is presented to the 

network for the first time, that produces an output 

random. The difference between this output and the 

desired is the error that is calculated by itself 

algorithm. The backpropagation algorithm firstly 

adjusts the weights in the output layer and then it 

adjusts backwards the rest of the layers to reduce the 
error. This process is repeated during the learning 

process until the error becomes acceptable (Silva et 

al., 2004). 

 

The neurons used in ANN were configured based on 

the model presented by (Haykin, 2001), as shown in 

Figure 3. The k index in the Synaptic weights  
jkw ,

 

refers to the neuron in question, while the j index is 

associated to the synapse input signal related to 
weight. The weight aim is multiply the signal in the 

input synaptic connected to neuron. The ANNs may 

have additional weights, named "bias", and aims to 

avoid error generation when all the input data are 

null, because the weights array not suffer training 

changes. The activation function is of internal order. 

The neuron takes a decision about what to do with the 

sum resulting value of the weighted inputs. The 

transfer function is an output function or logical 

threshold. It controls the activation intensity to obtain 

the desired network performance. 

  

 
Figure 3 – The artificial neurons structure used in ANN. Adapted from Haykin (2001). 
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The Figure 3 can be mathematically expressed in 

equations 7, 8 and 9.  

 



n

j

jjkk xwu
1

,  (7) 

kkk bu     (8) 

 kky    (9) 

  

Where: 

 uk is the linear combiner output (additive 

junction);  

 wk, j are the synaptic weights;  

 xj  are  the input variables; 

 k is the activation potential;  

 b is the bias;  

 yk is the k neuron output signal; 

  k  is the activation function. 

We used a network supervised training with the 

Resilient Backpropagation (Rprop) algorithm, shown 

in item 2. In this case we trained the ANN in inputs 

and outputs pairs, i.e., for each input supplied to the 

network there is an expected output which is also 

provided for the training. The network produces an 

output  answer that is compared with the desired 

output (that was provided). The difference between 
the network response and the answer desired (known) 

generates a residue (error). This error is used to 

calculate the necessary adjustment to the network 

synaptic weights, that will be corrected until the 

network response matches the output desired. This is 

the process of error minimization (Haykin, 2001). 

The equation 10 shows the MSE (Mean Squared 

Error) function to be minimized that we used in 

training phase (Haykin, 2001): 

    (10) 

  
Where: 

         dj is the ANN desired output value; 

         yj is the obtained output value; 

  

The input and output variables that we used were: 

Input variables: UTM (E); UTM (N); orthometric 

altitude; air average Temperature; air average 

humidity. 

Output variable: LST 

  

We carried out tests to select an ANN that provides 

the best performance to LST estimate, modifying the 

number of intermediate layers, the per layer neurons 

numbers and the activation function.   

An activation function, (v), defines the output of a 
neuron in terms of the linear combination of inputs, 

v. There are different kinds of activation functions: 

the threshold function, the piecewise-linear function, 
and the logistic (sigmoid) function (Mas & Flores, 

2008). We use logistic activation function (Mas & 

Flores, 2008) defined by equation (11).  

 
avk

e
v




1

1
    (11) 

  

We trained the ANN with information from a thermal 

image processing of the NOAA satellite of January 

29, 2003. The generated image have 1 x 1 km pixel 

size, and amounted 3737 points in the training 

process. The temperature and the average relative 

humidity were obtained, in this date, of the existing 

weather stations on the RSHB. 

 

With the ANN trained we generated 2 LST RSHB 

images of April 11, 2003 and October 15, 2003. We 
also generated, for the 2 dates, 2 images from the SW 

algorithm, and analyzed statistically the LST values 

obtained for ANN and SW. We used, in the results 

analysis, the statistical test "t-Student" and R2 

coefficient determination of the linear regression 

between the LST values of ANN and SW.   

 

3. Results and Discussion 

 

The ANN best performance has an input layer (5 

variables), an intermediate layer (with 4 neurons) and 

an output layer (with 1 neuron) as shown in Figure 4. 
The fact that we found a network structure with only 

a intermediate layer is agreeing to the results found 

by Kumar et al. (2002) and Zanetti et al. (2008). 

These authors modeled the evapotranspiration and 

concluded that an ANN with only a intermediate 

layer was enough to represent the non-linear 

relationship between the climatic elements and the 

modeled variable.  
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Figure 4 – The neural network structure used in the modeling of LST 

  

The activation function that we used was the 

sigmoidal logistic and the number of training cycles 

was 600. 

Figures 5(A) and 5(B) shows LST maps generated by 

ANN and SW models, respectively, on April 11, 

2003.  

 

 
Figure 5 - LST maps generated by ANN (A) and LST maps generated by SW (B) 

 

We found that both maps are similar, with 

discrepancies average, minimum and maximum of 

LST between the models of -0.30°C -1.23°C and 

3.08°C, respectively (figure 6). This shows that the 

proposed neural model generated a compatible 

pattern with the SW algorithm.   

 

 

Figure 6 - LST values modeled by RNA and SW of April 11, 2003 (A) and discrepancies between LST values 

 

 

 
(A) (B) 

 
(A) (B) 
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modeled by RNA and SW of April 11, 2003 (B).

 
  

The largest discrepancies between the LST values 

processed with ANN and SW, are concentrated at 

temperatures below 23°C (Figure 6A). This can be 

associate to the network input variables (temperature 

and air average humidity), that not may be 

representative for the whole hydrographic basin, 

because we have established the average values based 

on meteorological stations located within the study 

area. We cannot also rule out that these large 

discrepancies are associated with SW model that 

provides a 1.5°C average error to LST (Coll & 

Caselles, 1997).  

In summary, both models are closely correlated to 

most of the hydrographic basin,    according the R2 = 

0.9406 linear regression analysis (Figure 7).  

 
 

 
Figure 7 – Linear regression between LST values modeled by ANN and SW of April 11, 2003. 

  
 

In Figure 8 are shown the LST values modeled by ANN and SW algorithm, respectively, of October 15, 2003. 

 

 
 

 

Figura 7a – Discrepâncias absolutas entre 

valores de TS modelados por RNA e SW 

referentes ao período 11/04/2003. 

Figura 7b – Valores de TS modelados por 

RNA e SW referentes ao período 11/04/2003. 

 

 

 

(A) (B) 
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Figure 8 - LST values modeled by RNA and SW of October 15, 2003 (A) and discrepancies between LST values 

modeled by RNA and SW of October 15, 2003 (B).

 
 

We found that both maps (Figure 11a and 11b) are 

similar with discrepancies of average, minimum and 

maximum of LST values between the both models: -

0.26°C, -1.00° C and 3.07° C, respectively. This 

shows that the proposed neural model also generated 

a pattern compatible with the SW algorithm in this 

date.  

 

 
 

 

Figure 8 - LST values modeled by RNA and SW of October 15, 2003 (A) and discrepancies between LST values 

modeled by RNA and SW of October 15, 2003 (B). 

 

We perceived a subtle improvement (Figure 11b) in 

the fit between ANN and SW models compared with 

April 11, 2003. The discrepancy values are 

compatible in both simulations with few values above 
2.8 º C and most of points between -0.8 and 0.8° C.  

In regression analysis (Figure 9) we also found a 

strong correlation between the LST values modeled 

by ANN and SW (R2 = 0.9871).  

                           
Figure 9 – Linear Regression between LST values modeled by ANN and SW of October 15, 2003. 

 

Figura 7a – Discrepâncias absolutas entre 

valores de TS modelados por RNA e SW 

referentes ao período 11/04/2003. 

Figura 7b – Valores de TS modelados por 

RNA e SW referentes ao período 11/04/2003. 

 

 

 

(A) (B) 
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For the two experiments concerning to the days April 

11 and October 15, we applied the hypothesis test 

(Student's t) and found that the ANN model were able 

to process LST values with equal values to the SW 

average values, for significance level of 5%. 

4. Conclusions 

We proposed a simple method to determine LST 

values based on ANN with controlled training 

through an NOAA thermal imaging of January 29, 
2003. The variables involved in the model were 

positional information (UTM coordinates and 

altitude) and climatic (temperature and air relative 

humidity). 

 

The experiments we conducted on Rio dos Sinos 

hydrographic basin- Brazil, in April 11, 2003 and 

October 15, 2003 showed statistically that, for LST 

values, the modeling ANN did not differ from of the 

SW algorithm to a of 5% significance level. We also 

found a strong correlation between the LST values 
obtained by ANN and SW, with R2 values equal to 

0.9375 and 0.9871, respectively, of April 11, 2003 

and October 15, 2003. To simulation of April 11, 

2003 the largest discrepancies in the LST values were 

concentrated in the temperatures below 23ºC and this 

is due to the network input variables (temperature and 

air average humidity). This may not be representative 

for all hydrographic basin because they are average 

values obtained in some weather stations located 

within of the study area. 

 
The great advantage provided by ANN modeling was 

the simplicity in generating maps of LST, it is a 

method based on variables of easy access, which does 

not occur with the SW model, even though in some 

temperature ranges the discrepancies between both 

models are greater than 1.8° C.  

 

Finally, we think that is important to perform new 

experiments to better the effectiveness of the 

proposed method by testing in other seasons and with 

field confirmation of LST values with laser sensors. 
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