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ABSTRACT: The Maximum Entropy Principle is used to analyze a phase-space embedded SU(2) Hamiltonian that 

exhibits a very complex dynamics. It is seen that the uncertainty principle becomes an invariant of the motion. 
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1. INTRODUCTION 

The extreme complexity of phase space's trajectories 

that are very sensitive to small changes in the initial 

conditions is the signature of classical chaos, 

accompanied by i) an ostensibly random allotment of 

phase points on a Poincare's surface of section, and ii) 
an exponentially rapid separation of two initially 

close trajectories [1]. Instead, it is clear that the state 

vector of a closed quantum system cannot exhibit 

chaotic motion in Hilbert space. However, the 

interaction between a quantum system and a classical 

one may instead lead to authentic chaotic motion of 

the quantum component, a phenomenon known as 

semi-quantum chaos [2]. Remark that the term semi-

quantum is reserved to systems for which neither the 

quantum part nor the classical part would be chaotic 

by themselves. As Ballentine has pointed out [3], 
preferring the term semi-quantum over semi-classical 

is justified because the latter is restricted to scenarios 

in which the Feynman sum over paths is 

approximated by a sum over only the classical paths, 

or alternatively, as a WKB approximation to the 

wave function. Semi-quantum condition, instead, 

implies that one part is treated classically and the 

other one in quantum fashion. 

 

In the wake of Ballentine's work, we consider here 

the Maximum Entropy Principle Approach's (MEP) 

environment to deal with a kind of SU(2) non-linear 
semi quantum Hamiltonians: those which i) do not 

explicitly depend on time and ii) their quantum 

subsystems close a partial Lie algebra under 

commutation with the Hamiltonian [4,5,6]. We will 

show that for such MEP environment i) when a Lie 

algebra can be associated to a semi quantum non-

linear Hamiltonian through the closure condition [4], 

it is possible to integrate the quantum degrees of 

freedom of this semi quantum non-linear system and 

ii) for the SU(2) Lie algebra case, this semi quantum 

non-linear dynamics exhibits some invariants which 

are very helpful to study the transition from regular to 
irregular dynamics. One of these invariants is the 

generalized uncertainty principle (GUP) of refs. [5,7], 

which also arises in semi quantum dynamics and 

prevents the system from turning into a 

"mathematical artifact" (paraphrasing ref. [3]) given 

that its constant value is fixed through the initial 

conditions. Accordingly, is it possible to assimilate 

the ensuing irregular SU(2) non-linear dynamics to 

semi-quantum chaos? Or are we dealing with a 

different type complex dynamics? Answering this 

question is our present leitmotiv. 
 

The paper is organized as follows: some preliminary 

considerations are the subject of Section II. Sects. III 

and IV are devoted to explain how the MEP approach 

tackles the dynamics of semi-quantum systems. Sec. 

V is devoted to two illustrative Hamiltonian-

examples. In Section VI we present numerical 

simulations and some conclusions are drawn in Sect. 

VII. 

 

2. PRELIMINARIES 

Consider a system that possesses both quantum and 
classic degrees of freedom, with a coupling amongst 

them, that we call semi-quantum [3,8,9,10,11,12]. 

The associated Hamiltonian is of the general form 

[13] 

int
ˆˆˆˆ HHHH clq   (1) 
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 where qĤ , clĤ , and  intĤ are the quantum, 

classical, and interaction parts, respectively. There 

exist many situations in which a semi-quantum 

description has been attempted [8,11,14]. Indeed, 
many semi-quantum Hamiltonians are found in the 

literature [3,6,15,16,17,18,19,20,21,22] and M. A. 

Porter [8] made an exhaustive compilation of 

physical systems for which this kind of description is 

relevant. One may highlight vibrating quantum 

billiards as a useful abstraction of the ensuing semi-

quantum dynamics [23]. 

 

In this work we will provide a Maximum Entropy 

Principle (MEP) vantage point for these systems, that 

employs dynamic invariants in order to establish their 
main features. These invariants will allow us to i) 

adequately define initial conditions and ii) follow the 

details of the temporal evolution, from regular 

regimes to its irregular ones. Our main invariant, as 

we previously stated, is none other than the 

generalized uncertainty principle (GUP) [7]. From a 

MEP viewpoint, in the analysis of a semi-quantum 

dynamics one deals with a peculiar dynamic 

"working" space spanned by the variables 

nnN ppqqOO ,...,,,...,,ˆ,...,ˆ
111 . The first N 

NOO ˆ,...,ˆ
1  variables are the mean values of a 

set of non-commuting observable that close a partial 

Lie semi-algebra under commutation with the 

Hamiltonian. These will be regarded as our 

"constraints". The nn ppqq ,...,,,..., 11 are 2n 

classical variables of the system. As in the full 

quantum case developed in ref. [4], a new semi 

quantum closure condition defines an N×N dynamic 

matrix  ii pqG ,  which governs the dynamics of the 

system's quantum degrees of freedom. This matrix is 

now of a semi-quantum nature since it depends upon 

classical degrees of freedom. We will define a 

sufficient condition that the  ii pqG ,  matrix must 

fulfill in order the GUP constitute a dynamic 

invariant. For the dynamic evolution of the classical 

ingredients we follow the prescription given in refs. 

[5,6,11,13,14,19,20], i.e. the energy of the system is 

taken to coincide with the expectation value of the 

Hamiltonian,  HTrH ˆˆˆ  , traced over the 

quantum state, ̂ . In turn, Ĥ  will generate the 

temporal evolution of the classical degrees of 

freedom in the orthodox Classical Mechanics' 

fashion. The MEP's point of view approach to semi 

quantum non-linear systems takes advantage of four 

facts: 

 

1. It is possible to alternatively describe the time-

evolution of the quantum degrees of freedom also in 

the dual space of Lagrange multipliers associated to 

the quantum observable [4,24]. 

2. If it is possible to associate to the semi quantum 

non-linear system a Lie algebra under commutation 

operation with the Hamiltonian, then it is always 

feasible to find a statistical operator )(ˆ t  of 

maximum entropy, for all times. 

3. f it is possible to associate to the semi quantum 
non-linear system a Lie algebra under commutation 

operation with the Hamiltonian, then it is possible to 

integrate the quantum degrees of freedom of the non-

linear system. 

4. The existence of the GUP-invariant, IH say, for the 

SU(2) Lie algebra makes it possible to analyze the 

dynamics of the system in different regimes (irregular 

and regular) just by varying IH 's value. 

 

3. THE MAXIMUM ENTROPY FORMALISM 

FOR NON-LINEAR SEMI-QUANTUM 

SYSTEMS 

Consider the Hamiltonian given by Eq. (1). The 

classical degrees of freedom are the canonical 

conjugate variables  ii pq , . We choose for the 

Hamiltonian (1) the specific form 

   ii

n

i

jii

j

n

i

j pqFOpqaH ,ˆ,ˆ

11




 (2) 

where the first term includes both the qĤ  and intĤ  

ingredients, the jÔ 's being quantum operators, while 

the last term is a purely classical one, with 

 ii pqF ,  functions of the canonically conjugate 

classical variables  ii pq , . We have in fact a family 

of Hamiltonians with a classical phase-space 

substratum. The first term, is a linear superposition of 

quantum operators (belonging to a particular Lie 

algebra) which closes a partial Lie algebra under 

commutation with Eq. (1) through the semi quantum 
closure condition [5] 

    rii

N

r

n

i

rjj OpqgiOtH ˆ,ˆ),(ˆ

0 1


 

   (3) 

the  iirj pqg ,  are the coefficients of a N×N matrix 

 ii pqG , , whose nature is semi-quantum, given 

that the  iij pqa ,  terms in Eq. (2) may contain the 

classical degrees of freedom ii pq , . The MEP 

formalism [4,24] deals with the quantum degrees of 

freedom of the system and provides a density 

operator of maximum entropy for the initial time 

 0
ˆ t  (the boundary condition) which has the form 

[4] 

  












 



N

j

jjOIt
1

00
ˆˆexpˆ   (4) 
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and is expressed in terms of N+1 Lagrange 

multipliers N ,...,, 21 . According to Jayne's 

Information Theory [25,26], the statistical operator 

 0
ˆ t  is constructed starting from the knowledge of 

the expectation values of N+1 operators jÔ  termed 

as the constraints 

  NjOtTrO jj ,...,1,0;ˆ)(ˆˆ     (5) 

where the subindex 0 refers to the normalization 

condition 

  1ˆ Tr   (6) 

given that the identity operator IO ˆˆ
0   must to be 

included in order to fulfill condition (6). As it was 

established by Alhassid & Levine [4], the constraints 

must be linearly independent but not necessarily 

commuting ones. 0 is the one associated to the 

identity operator I and is obtained as 






































 



N

j

jjOTr
1

0
ˆexpln   (7) 

It is possible to demonstrate [5] that the above 

formalism applies also to for semi quantum instances. 

In order for the statistical operator (4) to preserve at 

all times the form it has at 0tt   (corresponding to a 

state of maximum entropy), the semi quantum closure 

condition (3) must hold. In this way, the equation of 

motion of the density operator [4] 

 )(ˆ),(ˆ1)(ˆ
ttH

it

t










  (8) 

may be converted into a set of coupled non-linear 

equations for the Lagrange multipliers in 

straightforward fashion, as Alhassid & Levine 
exemplified in ref. [4] for the full quantum case (see 

ref. [5] for more details). One obtains 

  Nrpqg
t

jii

N

j

n

i

rj
r ,...,1;,

0 1






 




  (9) 

Thus, for the semi-quantum non-linear case we have 

obtained a density operator )(ˆ t  of maximum 

entropy of the kind (4), for all times, at the cost of 

having to deal with a set of non-linear coupled 

equations of motion for the Lagrange parameters. 

Since the statistical operator obeys Eq. (8), the 

entropy   ˆlnˆTrS   is a constant of the 

motion [4], i.e. 

   tStS 0   (10) 

To derive the time evolution of the expectation values 

of the constraints generated by Eq. (3), we can 

proceed in an entirely similar fashion (Cf. ref. [24] 

for the full quantum case). One gets the following 

non-linear set of coupled equations of motion for the 

quantum degrees of freedom of the semi quantum 

system (2) 

  NkOpqg
dt

Od

rii

N

r

n

i

rk

k

,...,1;ˆ,

ˆ

1 1

 
 

  

(11) 

which are the generators of a Lie algebra and are 

obtained through Eq. (3). As we were able to close 

the algebra (see Eq. (3)) we can obtain the mean 

values of the quantum degrees of freedom in the 

fashion 

  NjOtTrtO jj ,...,1;ˆ)(ˆ)(ˆ     (12) 

and this means we have integrated the quantum 

degrees of freedom of the non-linear semi-quantum 

system given by Eq. (2). In fact, Eq. (12) is a 

primitive of the equation of motion (11). Thus, if we 

take the time derivative of Eq. (12), we obtain

 

  NjOt
dt

d
TrOtTr

dt

d

dt

Od

jj

j

,...,1;ˆ)(ˆˆ)(ˆ

ˆ










    (13) 

As in the Schrödinger representation the quantum 

operators do not depend explicitly on the time, all the 

time dependence is contained in the MEP density 

operator )(ˆ t  through the time dependence of the 

Lagrange parameters 


















0

ˆ

t

O j
. Then, from Eq. 

(13) we obtain (see also Eq. (8)) 

  NjOttH
i

TrO
dt

td
Tr

dt

Od

jj

j

,...,1;ˆ)(ˆ),(ˆ1ˆ)(ˆ
ˆ



















 



  (14) 

and one take advantage of the invariance of the trace under commutation operations 

  NjOtHt
i

Tr
dt

Od

j

j

,...,1;ˆ),(ˆ)(ˆ
1

ˆ










 


  (15) 

Finally, taking into account the semi-quantum closure 
condition (3), Eq. (15) may be cast as 
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 

  NjtOpqg

OpqgtTr
dt

Od

N

r

n

i

riirj

N

r

n

i

riirj

j

,..,1;)(ˆ,

ˆ,)(ˆ

ˆ

0 1

0 1

















 

 



          (16) 

which is the generalized Ehrenfest theorem given by 

Eq. (11). Summing up, if we are able to close a semi 

Lie algebra under commutation with the semi-

quantum non-linear Hamiltonian (2), then we will be 
able to integrate the equations of motion of the 

quantum degrees of freedom, in spite of the non-

linearity accrued to the terms  iij pqa , . Eqs. (12) 

may also be obtained via 

NjtO
j

j ,...,1;)(ˆ 0 








 (17) 

As the quantum subsystem of the non-linear semi 

quantum Hamiltonian (2) is a linear superposition of 

the generators of the Lie algebra, linked via the 

closure condition (3), we will also be able to obtain 

another constant of the motion: the mean value of the 

non-linear Hamiltonian (2). Thus, the density 

operator of maximum entropy may be used to 

calculate the mean value of the Hamiltonian (2) in the 
fashion 

     ii

k

n

i

kjii

j

n

i

j pqFOpqaHTrH ,ˆ,ˆˆˆ

11




    (18)  

The entropy at the maximum acquires the form [4] 

    j

N

j

jOttTrS ˆ)(ˆln)(ˆˆ
1

0 


     (19) 

and is a constant of the motion. 

Concerning the system's classical degrees of freedom, 

the energy is taken to coincide with the quantum 

expectation value of the semi-quantum Hamiltonian 

[11,13,14,19,20] given by Eq. (18) and the temporal 
evolution of the classical variables is determined via 

[5,13] 

ni
p

H

dt

dq

i

i ,...,1;

ˆ





   (20) 

ni
q

H

dt

dp

i

i ,...,1;

ˆ





  (21) 

Although Eqs. (20) and (21) generate the dynamic 

evolution of the classical variables, its nature is semi-

quantum as well because it gets entangled with the 

mean values of the quantum variables. Thus, the 

interplay between classical and quantum variables 

acquires special relevance through the matrix 

 pqG i ,  and the energy 

 jii OpqHH ˆ,,ˆˆ  , since they are the keys 

to determining the entanglement between the 

quantum and classical degrees of freedom of a semi-

quantum system of the type (2). 

3.1 GENERALIZED UNCERTAINTY 

PRINCIPLE FOR SEMI-QUANTUM 

DYNAMICS 

Now we appeal to the general expression for the 

uncertainty principle, valid for any two non-

commuting operators   CiBA ˆˆ,ˆ  , given in ref. [27] 

    2
2

22

4

1ˆˆˆˆˆˆ
2

1ˆˆ CBAABBABA 







   (22) 

For any pair of operators belonging to the Lie algebra generated by the semi quantum closure condition (3) we have 

      2
2

22
ˆ,ˆ

4

1ˆˆˆˆˆˆ
2

1ˆˆ
jijiijjiji OOOOOOOOOO 








 (23) 

Keeping in mind that, via Eq. (3), we are able to find a complete set of N non-commuting observable (CSNCO), 

which are our quantum degrees of freedom, we define the following expression 

   

  .ˆ,ˆ
4

1

ˆˆˆˆˆˆ
2

1ˆˆ

2

1 1

1 1

2
22

ji

N

i

N

ji
j

N

i

N

ji
j

jiijjiji

H

OO

OOOOOOOOI






































       (24) 

Eq. (24) is a sum over all the possible pairs of 

operators entering the CSNCO obtained through Eq. 

(3), which we have called the generalized uncertainty 

principle (see ref. [7]). 

 

3.2 INVARIANTS OF THE MOTION 
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In this Section we discuss the several motion 

invariants that, of course, considerably constrain the 

evolution dynamics of our system and gives raise to 

their intrinsic peculiarities. We begin by defining the 

quantum correlation coefficients following ref. [27] 

)()()(

ˆˆˆˆˆˆ
2

1
)(

t
j

t
i

t
ijjiij OOOOOOtK   (25) 

which are the components of the positive definite 

quantum correlation matrix K(t), corresponding to the 

generators of the Lie algebra according to Eq. (3). 

One appreciates that the left hand side of Eq. (24) 

may be obtained as the sum over the principal minors 

of order 2 of this correlation matrix. If we define 

operator  ijjijk OOOOL ˆˆˆˆ
2

1ˆ  , it is easy to see 

that i) kjjk LL ˆˆ   and ii)  2ˆˆ
jjj OL  . With the help 

of Eqs. (3) and (11) we are led to 

    
 


N

r

n

i

kriirjjriirk

jk

LpqgLpqg
dt

Ld

1 1

ˆ,ˆ,

ˆ

  (26) 

Now, if we take the time derivative on the left hand side of Eq. (24) and use Eq (26), we find that, in order for IH to 

be a dynamic invariant, it is necessary that 

     nipqgpqg iijjii

n

i

jj ,...,1;0,0,
1




, and 

 

        

    nipqggpqgg

pqgpqgpqgpqg

ii

n

i

rjjrii

n

i

rjrj

ii

n

i

jrii

n

i

rj

n

i

iijriirj

,...,1;,,

,,0,,

11

111












 

 

Matrix  ii pqG ,  becomes then anti-symmetric and 

the generalized uncertainty principle (24) becomes 

indeed a constant of the motion. It is also possible to 

demonstrate that if the matrix  ii pqG ,  is an anti-

symmetric one, all the principal minors of order r = 

1;2;...;N belonging to the correlation matrix are 

invariants of the motion too (see ref. [28] for more 

details). Accordingly, the number of invariants of 

motion equals that of quantum degrees of freedom. 

 

3.3 CONSEQUENCES OF THE ALGEBRA 

CLOSURE 
The first consequence of fulfilling Eq. (3) is to obtain 

a statistical operator of maximum entropy )(ˆ t  for 

the semi-quantum system (2) given by Eq. (4). This 

operator is valid for any time t due to the semi-

quantum closure condition (3). It guarantees the fact 

that the surprisal r

N

r

r Ott ˆ)()(ˆln
0




   is an 

exact solution of the Liouville equation (8). This 

enables one to turn this Eq. (8) into a set of N coupled 
non-linear differential equations for the Lagrange 

parameters (see Eqs. (9)). Additionally, this statistical 

operator makes it possible to obtain the mean values 

of the N relevant operators generated through Eq.  

(3), in the fashion  jj OtTrtO ˆ)(ˆ)(ˆ  , which, 

in virtue of the closure condition (3), becomes a 

primitive of Eq. (11). This means that we have 

integrated the quantum degrees of freedom of a no-

linear semi-quantum system (2). We also can 

integrate the mean value of the Hamiltonian (2) (see 

Eq. (18)). 

As a consequence, the entropy 

    ˆlnˆˆ TrS   remains an invariant of the 

motion for the semi-quantum case too. It is expressed 

in terms of both the set of relevant operators and their 

associated Lagrange multipliers (see Eq. (19)). The 

main difference between the full quantum case and 
the semi-quantum case is that, for the latter, not only 

the mean values but also the Lagrange parameters 

obey non-linear equations of motion (see Eqs. (9) and 

(11)). 

The closure condition enables one to obtain the 

generalized uncertainty principle for the quantum 

degrees of freedom of the semi quantum system (see 

Eq. (24)). It is an invariant of the motion if the semi-

quantum matrix  ii pqG , , generated through the 

closure condition, is anti-symmetric. 

 

3.4 THE SU(2) INSTANCE 
In what circumstances does the dynamic matrix 

 ii pqG ,  become anti-symmetric? The answer 

depends upon the Lie algebra associated to the 

system. It is well-known that  
zyx  ˆ,ˆ,ˆ  is a 

basis of the SU(2) algebra. The pertinent 

commutation relationships [29]  hold 

  l

jklkj i  ˆ2ˆ,ˆ   (27) 

and the semi-quantum Hamiltonian of the type (2) 

becomes 
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  )(
2

ˆ,ˆ
23

1 1

qV
m

p
pqaH jii

j

n

i

j 
 

   (28) 

where j̂  are the generators of SU(2). 

Proposition: If a set of operators, which fulfills the 

commutation relation (27conmut), closes a 

commutation algebra with a Hamiltonian of the type 

(28), then the semi-quantum matrix  ii pqG ,   of 

the system, defined by means of the closure condition 

(3), is an anti-symmetric one. 

 

Proof:  If k̂  belongs to the relevant set, then: 

       l

jklii

j l

n

i

jkjii

j

jk pqaipqaiH  ˆ,ˆ,ˆ,2ˆ,ˆ
3

1

3

1 1

3

1


  



. Taking into account the closure condition (3): 

    0ˆ,2,
3

1 1 1

3

1










  
   

l

l

n

i

n

i j

jkliijiilk pqapqg 

. Now, as the operators l̂  are linearly 

independent,

    0,2,
1

3

1










 
 

n

i j

jkliijiilk pqapqg  . The 

index i runs over the classical variables  ii pq , , 

which are, of course, linearly independent. If we 

consider a fixed i value, for any element  iilk pqg ,  

belonging to  ii pqG ,  it is true that 

   



3

1

,2,
j

jkliijiilk pqapqg  ; ni ,...,1 . 

Accordingly,   0, iill pqg , and 

     iiiikliilk pqGpqgpqg , lk,, , ,   is 

anti-symmetric. End of Proof 

Every Hamiltonian that closes an algebra with the 

SU(2) generators is accompanied by the invariant 

(24) expressed in the fashion [7].

 

  2222
ˆ23ˆˆˆ23   zyx

HI . (29) 

Because of the uncertainty principle (see Eq. (24))  
23

1,

ˆ,ˆ
4

1






kj
kj

kj

HI  , and Schwarz' inequality entails 

1ˆ
2
 , i.e., the uncertainty principle for the SU(2) Lie algebra, that can be expressed in the guise 

1ˆˆˆ0
222
 zyx      (30) 

defining the celebrated Bloch sphere of the system. 

 

4. ILUSTRATION: A SPECIAL SU(2) 

HAMILTONIAN 

Let us consider the following specific Hamiltonian 

[3] 

42
ˆˆˆ

42 q

m

p
CqBH xz     (31) 

where q and p are canonically conjugate classical 

variables and i̂  are spin(1/2)-operators. The zB̂  

term is the spin Hamiltonian, 
42

42 q

m

p
  yields the 

classical Hamiltonian, and xCq̂  represents the 

interaction between them. By considering the Lie 

algebra  
zyx  ˆ,ˆ,ˆ  as the relevant set, via Eq. (3) 

one gets a set of non-commuting observable whose 

mean values are the quantum degrees of freedom of 

the system, while q and p are the classical ones. Eq. 

(3) leads to the following G(q) anti-symmetric matrix 























020

202

020

)(

qC

qCB

B

qG   (32) 

Eqs. (9) and (11) yield both the quantum equations of 

motion and those of the Lagrange multipliers 

associated to them 

y

x
B

dt

d



ˆ2

ˆ
 (33) 

zx

y
CqB

dt

d



ˆ2ˆ2

ˆ
  (34) 

y

z
Cq

dt

d



ˆ2

ˆ
  (35) 

y
x B

dt

d



2  (36) 

zx

y
CqB

dt

d



22    (37) 
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y
x Cq

dt

d



2   (38) 

Moreover, the quantum state of the system can be 

described by means of the state operator [30] 

 













 











.
tanh

ˆ
2

1
ˆˆˆexpˆ

0 Izzyyxx  (39) 

with  zyx  ˆ,ˆ,ˆ


, 
222

xyx  


, 

and 0 , which derives from the normalization 

condition, is 












 

222

0 cosh2ln xyx  . The state 

operator )(ˆ t  enables us to evaluate (to integrate) 

the mean values of the quantum degrees of freedom 

xx 



 


tanh

ˆ    (40) 

yy 



 


tanh

ˆ    (41) 

zz 



 


tanh

ˆ     (42) 

Taking time derivatives in these equations, and 

minding Eqs. (36) to (38), we straightforwardly 

recover the equations of motion (33), (34), and (35), 

as the MEP approach prescribes. Eqs. (40), (41) and 

(42) show clearly that, if it is possible to associate to 

a non-linear Hamiltonian (of the type of Eq. (2)) a 

Lie algebra (under commutation operation through 

Eq. (3)), then it is possible to integrate the quantum 

degrees of freedom of the semi quantum non-linear 

system. The mean value of the Hamiltonian (31) 

becomes 

42
ˆˆˆ

42 q

m

p
CqBH xz     (43) 

which, together with Eqs. (20) and (21) leads to the 

classical equations of motion 

m

p

dt

dq
   (44) 

3ˆ qC
dt

dp
x   .  (45) 

The quantum correlation matrix's components are [5]: 
2

ˆ1 xxxK  , 
2

ˆ1 yyyK  , 

2
ˆ1 zzzK  , yxyxxy KK  ˆˆ , 

zxzxxz KK  ˆˆ , 

zyzyyz KK  ˆˆ  As the matrix G(q), 

given by Eq. (32), is anti-symmetric, three dynamic 

invariants arise from the quantum correlation matrix's 

components: the sum over the principal minors of 

order 1, 2, and 3, respectively. They are

 

 
2

3  zzyyxx KKKKTr  (46) 

  2
3

1,

2
ˆ23  




kj
kj

jkkkjj

H KKKI (47) 

 
2

222

ˆ1

2det



 xyzzxzyyyzxxyzxzxyzzyyxx KKKKKKKKKKKKK
    (48) 

with 
2222

ˆˆˆˆ
zyx   . As the 

correlation matrix is a positive definite one, these 

three invariants are all positive. In particular,the  

invariant (47) is the generalized uncertainty principle 

of ref. [7] (see Eq. (24)). Then, it is true that 

1ˆ23
2
 HI  (49) 

which implies the well-known condition 1ˆ
2
 . 

As the state operator (39) describes a quantum mixed 

state, the semi-quantum system (31) can never be 

found in the pure state 1ˆ
2
 . Indeed, were it so, 

the positive definiteness of the correlation matrix 

would collapse   0ˆ1det
2
 K as 

1ˆ  . We can then regard the invariant (48)) as 

an "indicator" that tells us if the system stays in a 

semi-quantum regime, without recourse to any other 

consideration. The invariance condition imposed on 
2

̂  by the uncertainty principle (49), together with 

the invariance of the energy Ĥ , strongly constrain 

the possible initial conditions of the classical 

variables. This is still another evidence of the 

interplay between both kind of variables. With the 

help of Eqs. (36), (37), and (38), it is easy to 
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demonstrate that the quantity 

222

xyx  


 is a constant of the 

motion. We will now establish the connection 

between invariant 


 and invariant 
2

̂ . Eqs. (33) 

to (38) indicate that

 






 

22222222
tanhˆˆˆˆ

xyxzyx    (50) 

which leads to 

1tanh0
2222 




  xyx     (51) 

Eq. (51) is the uncertainty principle for the dual Λ-

space of Lagrange multipliers whose expression is 

also affected by the classical degrees of freedom (see 

Eqs. (36) to (38)). 
 

5. NUMERICAL SIMULATIONS 

In order to illustrate the dynamics of the SU(2) 

Hamiltonians described in the previous Section we 

performed some numerical simulations. We have 

studied the set of non linear equations of motion 

corresponding to our Example (see Eqs. (33)-(35) and 

Eqs. (44)-(45)). One needs to set adequate initial 

conditions 
)0(

ˆ
x , 

)0(
ˆ

y , and 
)0(

ˆ
z  to 

illustrate the workings of the system as governed by 

the generalized uncertainty principle (GUP) of Eq. 

(30) and consider a large range of initial conditions 

(IC) as the polarization vector runs over the possible 

values allowed by the requirement 1ˆ0
2
  ). 

The corresponding IC on the classical degrees of 

freedom were imposed by arbitrarily selecting the 

)0(q -value while its partner )0(p  was obtained from 

the energy conservation conditions (43). We have 

evaluated the Poincaré sections for the quantum state 

of the system (the Bloch sphere) for the situation in 

which q = 0. The results displayed in Figs. 1(1figura 

1) and 2 (2figura 2 nueva) correspond to the 

following values: 5.0ˆ H ; B = 0.5; C = 1; m = 

16; 5.0)0( q ; 0ˆˆ
)0()0(
 yx  ; 

 ˆˆ
)0(
z , 
















4
ˆˆˆ2

4

)0(

)0()0()0()0(

q
CqBHmp xz 

 was obtained from the energy conservation (see Eq. 

(43)). 

FIGURA 1 

FIGURA 2nueva 

As the ̂  value decreases from 1ˆ   to 

0ˆ  , the system evolves from an irregular 

regime to a regular one as can be appreciated from 

the corresponding Poincaré sections. In fact, the GUP 

imposes very strong constraints on the SU(2) non 

linear dynamics in the sense that, as the quantum 

degrees of freedom evolve, the polarization vector 

̂  must be confined to evolve on the surface of a 

Bloch of radius 

1ˆˆˆˆ
2222
 zyx  . The radius is 

constant and fixed at t = 0 through the initial 

conditions. 

 

6. CAN THE QUANTUM STATE OF THE SU(2) 

NON-LINEAR SEMI-QUANTUM SYSTEM BE 

CHAOTIC? 

We have dealt here with time-independent semi 

quantum Hamiltonians. The quantum subsystem 

closes a partial Lie algebra under commutation with 

the Hamiltonian through Eq. (3). The MEP approach 

makes it clear that: i) when a Lie algebra can be 

associated to a semi quantum non-linear Hamiltonian 

through the closure condition, then it is possible to 

integrate the quantum degrees of freedom of this semi 

quantum non-linear system, ii) for the SU(2) Lie 

algebra case, this semi quantum non-linear dynamics 
exhibits some invariants which are very helpful to 

study the transition from regular to irregular 

dynamics. One of these invariants is the generalized 

uncertainty principle (GUP) of refs. [5,7], given that 

its constant value is fixed through the initial 

conditions. We ask whether it is possible to associate 

the irregular SU(2) non-linear dynamics of the 

quantum state (depicted in Figs. 1(1figura 1) and 2 

(2figura 2 nueva)) to semi quantum chaos or we 

instead face a new kind of complex dynamics. The 

natural procedure would involve computing 

Lyapunov exponents. However, it was shown in ref. 
[31] that for this kind of Lie-governed dynamics this 

is not possible. Thus, in trying to provide a tentative 

answer, we have employed a wavelet statistical 

complexity analysis [32] (for details, see the 

Appendix I). This kind of analysis yields a 

probability distribution associated to the signals 

provided by our system's treatment, which in turn 

enables one to compute information quantifiers like 

entropy and statistical complexity. It is known [33] 

that chaotic systems are endowed with medium 

entropy values and large statistical complexities. 
 

In Figs. 3(3SxComplejidad-Entropia), 

4(4SyComplejidad-Entropia), and  

5(5SzComplejidad-Entropia) we have depicted the 

Statistical Wavelet Complexity (Complexity) versus 
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the relative entropy max/ SS  for the time series 

associated with, respectively, x̂ , y̂ , and 

z̂  for the following values of coupling constant 

C = 0.5; C = 1; C = 2 and C = 4. The value C = 1 

corresponds to Poincaré surfaces of Figs. 1(1figura 1) 

and 2(2figura 2 nueva). We appreciate the fact that 

both the statistical complexity and the relative 

entropy are too low to be associated with chaos, 

according to the tenets of [33]. Thus, we tentatively 

conclude that our system does not display chaotic 

motion. The initial conditions used to generate Figs. 

3(3SxComplejidad-Entropia),4 (4SyComplejidad-
Entropia), and 5 (5SzComplejidad-Entropia)  were 

0ˆˆ
)0()0(
 yx  ;  ˆˆ

)0(
z  (i.e. the 

uncertainty principle invariant of Eq. (30)); 

5.0)0( q and )0(p  as indicated above. The 

parameter values used were 5.0ˆ H ; B = 0.5; m 

= 16 and the coupling constant C was varied as it was 

said before. 

 

FIGURA 3Sx Complejidad-Entropia 

FIGURA 4Sy Complejidad_Entropia 

FIGURA5 Sz Complejidad_Entropia 

 

7. CONCLUSIONS 
We can summarize our results as follows: 

1.When it is possible to associate to the semi 

quantum non-linear system a Lie algebra under 
commutation operation with the Hamiltonian 

(through Eq. (3)), then it is always possible to find a 

statistical operator )(ˆ t  of maximum entropy for all 

times for the system, then it is possible to integrate 

the quantum degrees of freedom of the non-linear 

system. Particularly, if the semi quantum matrix 

 pqG ,  (generated through the closure condition) 

is an anti-symmetric one, the non-linear semi 

quantum system possesses as many invariants of the 

motion as quantum degrees of freedom it has. 

 

2.Eqs. (3), (9), (11), (20), and (21), produce an 

interplay between the quantum and classical degrees 
of freedom of the system. In this sense, we can say 

that the coupling constant C makes the quantum and 

classical variables of the system to be non separable. 

 

3.The SU(2) dynamics of semi quantum 

Hamiltonians like Eqs. (2) or (28) exhibits interesting 

features that are unravelled with the help of our 

invariants of the motion, i.e. 

 

it is always possible to find a set of non-commuting 

observable, through Eq. (3), to describe Hamiltonians 

of the type (28). This set is that of the generators of 

SU(2), i.e.  zyx  ˆ,ˆ,ˆ . On account of them, 

the dynamics takes place in a semi quantum space of 

dimension 5:  pqgenV zyxSQ ,,ˆ,ˆ,ˆ   

and it is always possible to find the three invariants 

given by Eqs. (46), (47) and (48): the sum over the 

principal minors of order 1, 2, and 3 belonging to the 

correlation matrix K(t). In particular, the sum over the 

principal minors of order 2 is the generalized 

uncertainty principle given by Eq. (24) [5]. 

 

These Hamiltonians exhibit the uncertainty principle 

as an invariant of the motion. This invariant takes the 

particular form 

1ˆˆˆˆ0
2222
 zyx  , whose 

value can be fixed by the initial conditions of the 
system. 

From a wavelet statistical complexity analysis we 

tentatively conclude that our irregular regime is not 

chaotic. 

4.The SU(2) dynamics displays two kind of regimes: 

a regular and an irregular one, as seen from the 

Poincaré sections of Figs. 1(1figura 1) and 2(2figura 

2 nueva). The irregular regime always arises (for 

certain values of the system's parameters) when the 

invariant 1ˆ
2
 . When the system attains an 

irregular regime, as the invariant runs from 

1ˆ
2
  to 0ˆ

2
 , the dynamics undergoes 

a regime-change from irregular to regular, according 

to the 
2

̂ -value. As the condition 1ˆ0
2
   is 

the uncertainty principle and 
2

̂  is a dynamic 

invariant of motion, we see that 
2

̂  is a regime-

indicator, as Figs. 1(1figura 1) and 2(2figura 2 nueva) 

graphically explicate. 

The initial conditions (IC′s) play a crucial role and 

deserve special attention. The IC′s should be chosen 

coherently, obeying the uncertainty relation given by 
Eq. (30) and the energy-conservation condition. The 

uncertainty principle also imposes constraints on the 

classical variables in the sense that the )0(p -value 

cannot be determines without taking into account the 

condition (30). 

 

5.Concerning what regime the system is in, as the 

Ehrenfest equations do not depend on  , no limit: 

0  is needed in our approach. 

 

APPENDIX 1: WAVELET STATISTICAL 

COMPLEXITY ANALYSIS 

The wavelet analysis (WA) is a powerful technique 

devised for the analysis of complex signals 

[32,34,35,36,37]. One introduces here the notions of 
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statistical wavelet complexity and wavelet entropy. 

WA considers as a central concept that of a special 

function )(t  called the mother wavelet. From it 

one generates a wavelet family, )(tab . This is a set 

of elementary functions which arise out of dilations 

and translations of the mother wavelet )(t . An 

arbitrary element of the wavelet family can be 

expressed as [33,38] 








 


a

bt

a
tab

1
)(     (52) 

0a  and Rb  are scale and translation 

parameters, respectively and t is the time. As the 

scale parameter a  increases, the wavelet )(tab  

becomes narrower. By modifying the a -value, it is 

possible to obtain several replicas, at different scales, 

with the variable time localization of a unique pattern 

[32,38]. As pointed out in ref. [38]: "for special 

choices of the mother wavelet function )(t , and 

for the discrete set of parameters 
j

ja  2  and 

2/

, 2 j

kjb   Zkj , , the wavelet family 

 ktt jj

kj  22)( 2/

,  constitutes an 

orthonormal basis of Hilbert's space  R2L , 

consisting of finite-energy signals ". Our data points 

are those generated by the system of non-linear 
differential equations [Cf. Eqs. (33)-(35) and Eqs. 

(44)-(45)]. The wavelet analysis introduces a proper 

orthonormal basis so that any of our temporal signals 

S(t)'s (obtained through Eqs. (33)-(35) and Eqs. (44)-

(45)) may be uniquely decomposed. Such 

decomposition may be carried out over all resolution 

levels j [32]. If we assume that the signal S(t) is given 

by the sampled values S={x(n); n = 1;...;N}, 

corresponding to a uniform grid with sampling time 

TS = 1, then the wavelet expansion, according to 

refs.[32], reads   
jj NN 2log  

)()()()(
11

, trtkCtS
jj N

j

N k

kjj  
















  (53) 

where: )(kC j  are the wavelet coefficients and the 

family )(, tkj  is an orthonormal basis for  R2L , 

so that )(),()( , ttSkC kjj  . It is also possible 

to define the "energy" at each resolution level j = -

1;...;-Nj in the following fashion [32,36] 

22

)()( 
k

jjj kCtrE  (54) 

and the total energy may be cast as 

 












00

22
)()(

j

j

j k

jTOT EkCtSE   

(55) 

Eq. (54) measures the frequency-contribution 

corresponding to the resolution level j, while Eq. (55) 

measures the whole multirresolution level's 

contribution. Given that each energy level Ej 

measures the contribution of the level j to the whole 

signal S(t), it is possible to define a probability 

distribution  
1 iNi

j
p  for the multirresolution 

levels 

2

2

0

2

2

)(

)(

)(

)(

tS

kC

kC

kC

E

E
p k

j

j k

j

k

j

TOT

j

j



 
















  

(56) 

jp  is the probability that the signal S(t) main contain 

frequencies belonging to the multirresolution level j 

and  
1 iNi

j
p  is the probability distribution of 

energies (frequencies), that must obey the condition 

1
1




 jNj

jp    (57) 

The total wavelet entropy (TWS) associated to the 

probability distribution is defined as [32] 

 
j

j

jWT ppS 2

0

log


     (58) 

As it was pointed out in ref. [32]: "the total wavelet 

entropy (58) appears as a measure of the degree of 
order/disorder of the signal. It provides useful 

information about the underlying dynamic process 

associated to the signal": one generated by a totally 

random or chaotic process can be taken as 

representative of a very disordered behavior: 

 
jMAXWT NSS 2log . Conversely, an ordered 

process may be represented by a periodic mono-

frequency signal: 0WTS . In the wake of ref. 

[32], we will here adopt the definition of "disorder-

amount" Q  (normalized total wavelet entropy, so 

that 10  Q ) as 

 

 

 
j

j

jj

j

WT

MAX

WT

N

pp

N

S

S

S
Q

2

0

2

2 log

log

log






   (59) 

and the definition of statistical wavelet complexity Complexity as [32] 
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 
2

1
2

0

1
; 



















jNj

j

j

eqj
N

pppDDQComplexity  (60) 

where D is the so-called "disequilibrium" of 

refs.[32,39], which measures "how far" the 

probability distribution  ip  is located from the 

uniform distribution 

j

eq
N

p
1

  that characterizes 

equilibrium in Gibbs' statistical mechanics [32]. The 

statistical wavelet Complexity is also normalized: 

10  Complexity . 
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Fig. 1: Poincaré section on Bloch sphere for <H> = 0.5; B = 0.5; C = 1; m =16; q₍₀₎=0.5;<σx>₍₀₎ = <σy>₍₀₎ = 0 and 

<σz>₍₀₎ : (a): 0.9; (b): 0.8; (c): 0.7; (d): 0.6 
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Fig. 2: Poincaré section on Bloch sphere for <H> = 0.5; B = 0.5; C = 1; m = 16; q₍₀₎ = 0.5;<σx>₍₀₎ = <σy>₍₀₎ = 0 and 

<σz>₍₀₎ : (e): 0.4; (f): 0.3; (g): 0.2; (h): 0.1 

 

 
Fig.3: Statistical Wavelet Complexity vs. relative Entropy S/Smax for 〈σx〉 time series for the following values of 

coupling constant: C = 0.5; C = 1; C = 2; C = 4 
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Fig.4: Statistical Wavelet Complexity vs. relative Entropy S/Smax for 〈σy〉 time series for the following values of 

coupling constant: C = 0.5; C = 1; C = 2; C = 4 

 

 
Fig.5: Statistical Wavelet Complexity vs. relative Entropy S/Smax for 〈σz〉 time series for the following values of 

coupling constant: C = 0.5; C = 1; C = 2; C = 4 

 

 


