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Abstract: An overview and a derivation of interval type-2 fussy logic system (IT2 FLS), which can handle rule’s
uncertainties on continuous domain, having good number of applications in real world. This work focused on the
performance of an IT2 FLS that involves the operations of fuzzification, inference, and output processing. The out-
put processing consists of Type-Reduction (TR) and defuzzification. This work made IT2 FLS much more accessible
to FLS modelers, because it provides mathematical formulation for calculating the derivatives. Presenting extend to
representation of T2 FSs on continuous domain and using it to derive formulas for operations, we developed and
extended the derivation of the union of two 1T2 FSs to the derivation of the intersection and union of N-IT2 FSs that
is based on various concepts. The derivation of all the formulas that are related with an IT2 and these formulas de-
pend on continuous domain with multiple rules. Each rule has multiple antecedents that are activated by a crisp
number with T2 singleton fuzzification (SF). Then, we have shown how those results can be extended to T2 non-
singleton fuzzification (NSF). We are derived the relationship between the consequent and the domain of uncertainty
(DOU) of the T2 fired output FS. As well as, provide the derivation of the general form at continuous domain to cal-
culate the different kinds of type-reduced. We have also applied an IT2 FLS to medical application of Heart Diseases
(HDs) and an IT2 provide rather modest performance improvements over the T1 predictor. Finally, we made a com-
parison of HDs result between 1T2 FLS using the IT2FLS in MATLAB and the IT2 FLS in Visual C# models with
T1 FISs (Mamdani, and Takagi-Sugeno).
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1. INTRODUCTION

This work, introduced a new class of fuzzy logic sys-
tems—interval type-2 fuzzy logic system (IT2 FLS),
where the antecedent or/and consequent membership
functions (MFs) are interval type-2 fuzzy sets (IT2
FSs), [Mendel et al. 2009, 2006 and 2004], which is
an extension of the concept of a type-1 fuzzy set (T1
FS). In an IT2 FLS, the knowledge used to construct
rules is uncertain, and this uncertainty drives to rules
having uncertain antecedents and/or consequents,
[Wu and Mendel 2012, 2007 and 2002]. Now as MFs
of a general T2 FSs are fuzzy, therefore T2 FSs are
able to model as uncertainties, and their MFs are
three-dimensional, [Zeng et al. 2008]. T2 FSs third
dimension provides additional degrees that make it
possible to directly models uncertainties, [Liang and
Mendel 2000]. T2 FSs are difficult to use and under-
stand because: i) T2 FSs three-dimensional makes
them very difficult to depict; ii) there is no simple
terms set that let us effective communication about
T2 FSs, and to then be mathematically accurate, and
iii) using T2 FSs is computationally more complex
than using T1 FSs, [Mendel et al. 2009, 2007 and
2002]. Most people only use an IT2 FSs in a T2 FLS,
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because of the computational complex of using a
general T2 FS, the result being an 1T2 FLS. The re-
sulting 1T2 FLS have the chance to provide better
performance than a T1 FLS, and all of the results that
are needed to perform an IT2 FLS can be obtained by
T1 FS mathematics. The computations related with
IT2 FSs are very flexible, which makes an IT2 FLS to
a large degree practical, [Melgarejo et al. 2004]. Sec-
tion 2, defined a small set of concepts in a mathemat-
ically accurate way of general T2 FSs and IT2 FSs.
We are extended the theoreml, which was given by
Mendel et al. 2006 for discrete universes of discourse,
to continuous universes of discourse. Section 3, de-
rived the formulas of the intersection and union of N-
IT2 FSs that is based on different concepts: i) the
concept of embedded IT2 FSs such as theorem 2; ii)
the concept of Extension Principle such as theorem 3.
Additionally, we derived the formulas of the meet and
join of N-IT2 FSs such as theorem 4, [Karnik et al.
2001, 1999, and 1998]. Section 4 has described an
IT2 FLS, T2 singleton fuzzification (SF) and T2 non-
singleton fuzzification (NSF). Present the derivation
of all of the formulas that are related with an IT2 FLS
at continuous domain, and handled multiple rules.
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Each rule has multiple antecedents that are activated
by a crisp number (the case of SF), after which we
shown how those results can be extended to (the case
of NSF), [Mendel et al. 2009, 2007, 2006 and 2004].
Consequently, we are derived the relationship be-
tween the consequent and the domain of uncertainty
(DOU) of the T2 fired output FS that summarized by
theorem 5a and 5b for SF and NSF, respectively,
[Castro et al. 2008]. Section 5, showed that computa-
tion of the continuous version of type-reduction that
is used in going from fired-rule IT2 FSs to the de-
fuzzified number at the final output of FLS, [Salazar
et al 2011], [Karnik and Mendel 1999 and 2001]. We
have provided the derivation of the general form for
continuous domain to calculate the different kinds of
type-reduced, which was given by Karnik et al. 2004
but for discrete domain. Additionally, we are present-
ed the term of defuzzification which using the aver-
age of endpoints to obtain the crisp output of IT2
FLS, [Mendel et al. 2009, 2007 and 2002]. In Section
6, a medical application of T2 FLS’s to heart diseas-
es (HDs) is applied, which demonstrated the basic
ideas and the mathematical operations of IT2 fuzzy
sets and systems. We also provide a Matlab perfor-
mance of IT2 FLS. A comparison of HDs between

IT2 FLS using the IT2FLS in MATLAB and the
IT2FLS in Visual C# models with T1 FISs (Mamda-
ni, and Takagi-Sugeno) are presented in this Section.
Section 7, we draw conclusions. Finally, an Appendix
is presents the concept of Extension Principle.

2. INTERVAL TYPE-2 FUZZY SETS

Most people only use interval type-2 fuzzy sets (IT2
FSs) in a type-2 fuzzy logic system (T2 FLS) because
of the computational complexity of using a general
T2 FS, the result being an interval type-2 fuzzy logic
system (IT2 FLS). We define an IT2 FS and some
important related concepts, to provide a simple col-
lection of mathematically terms that will let us effec-
tively communicate about such sets. Imagine fuzzing
the type-1 membership function (MF) depicted
through Fig. 1(a) by moving the points on the trape-
zoid either to the right or to the left with the different
amounts, as in Fig. 1(b). Therefore, at a specific value
of x, say x' for all x € X, there no longer is a single
value for the MF; instead, the MF takes on values
wherever the vertical line intersects the fuzzy. The
basic concepts of type-2 fuzzy sets are introduced as
follows, [Mendel et al. 2009, 2007, and 2002]:
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Fig. 1. (a) Representing the Type-1 MF and (b) Fizzing T1 MF

Definition 1: A type-2 fuzzy set, expresses the non-
deterministic truth degree with uncertainty for an
element that belongs to a set. A type-2 fuzzy set de-

A={(Gcw,ps(x,w)|vx€X,V uej*c[o1]}

It can also be expressed as:

i= [ | mew/ww, e,

XEX uej}

noted by A is described by a type-2 MF uz(x, u),
where x e Xandu € J¥ € [0,1] ,and 0 <
ui(x,u) < 1 isdefined as the following:

)

)

where [[ denotes union over all allowable x and u. When uncertainties disappear, a T2 MF must reduce to a T1
MF, in which the variable u equals uz(x,w), and the third dimension disappears. The amplitudes of a MF should

locate between or be equal to zero and one. If all 4 (x, ) equal to one then A is an interval T2 FS (IT2 FS).

Definition 2: At each value of x, say x = a, the 2-dimentional plane whose axes are u and u(a, ) is called a ver-
tical-slice of uz(x,u). A secondary MF is a vertical-slice of uz(x,u). Itis pz;(x = a,u)fora € X andv u € J¥

[0,1], i.e,
G =a0=p@= [ 1yureio

uej¥

[

3)

Because V a € X, we drop the prime notation on uz(a), and refer to uz(x) as a secondary MF, the IT2 FS can be

expressed (2) as, [Mendel et al. 2009, 2007, and 2002]:
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A= f /,Lg(x)/x=f fl/u /x. (4)

XEX x€X |uej}
The domain of a secondary MF (J%) is called the primary membership of x, where J% < [0,1] for V a € X.

Definition 3: The amplitude of a secondary MF is called a secondary degree. The secondary degrees of an IT2 FS
are all equal to one. If x and ]x are both continuous, then the right-hand side of (4) can be denoted as:

A— 1/u‘/x— 1/u /xi= fll/ulj /xlu...u lle/uNj‘/xN, (5)
j=1 j=1

xeX uE]x i= 1 uE]x
where U denotes the union, and N is an approach infinity. Note that, the variable x has been divided into N values,
and at each of this value u has been divided into M; values.

Definition 4: Uncertainty in the primary memberships of an IT2 FS A consists of a bounded region that we call the
footprint of uncertainty (FOU). It is the union of all primary memberships as the following, Wu and Mendel 2012,
2007, and 2002:

Fou(4) = U JE. (6)

XEX
Equation (6) represents a vertical-slice of the FOU, because each of J¥ is a vertical slice. The shaded region on the

xu plane in Fig. 2 is the FOU. If a T2 FS is continuous with a naturally ordered primary variable then the domain of
uncertainty (DOU) for a T2 FS equal to FOU, i.e., DOU(A) = FOU(A).
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Fig. 2. (a) MFs when base endpoints | and r have uncertain intervals related with them, (b) The depicted of the
vertical slice at x .

Definition 5: The lower membership function (LMF) and upper membership function (UMF) of A are two T1 MFs
that bound the DOU. The LMF is associated with the lower bound of DOU(A) and is denoted by 1a(x),V x € X and

the UMF is associated with the upper bound of DOU(A) and is denoted by i;(x),V x € X, as following:
u;(x) = DOU(A), and 1;(x) = DOU(A), Vx€eX (7
We observe that for an IT2FS J¥ = [,uA(x), uy(x) ] ,V x € X. Thus, interval type-2 fuzzy set is denoted by:

i= | 1/4 /x ®

*EX | uel 4, uA(x)]C[O 1]

Definition 6: For continuous universes of discourse X and U, an embedded IT2 FS has N — oo countable-infinity
number of elements, where A contains exactly one element from J¥,, namely u;, (i = 1,2, ...), each with a second-
ary degree equal to one, i.e.,

Ay = f:l [1/w;)/x;, u; €J% €U =[01] 9
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Set A is an embedded in A. There are a countable-infinite number of embedded 1T2 FSs for a continuous 1T2.

Theorem 2.1: Let A% denote the k" embedded IT2 FSs for T2 FS, when X and U are continuous, is as follows:

Ak = {(uf‘, /,Lg(xi,u{‘)),i =1, ...,oo}, (10)
where uf € {w;;, j =1,...,M;}, then A is the union of all of its embedded IT2 FSs, i.e,
nN—»oo
A= f Ak (11)
k=1

in which ny_,., = [132, M;, and M; denotes the partition levels of secondary variable ) at each of the x;.

Proof:
We prove this theorem by proving that the general case of Equation (6) can be re-expressed so that it contains exact-
ly all of the parts on the right-hand side of (11). Firstly, we should be proving for each node along the u axis is con-
tained in n; = [[;2; M; embedded sets (I = 1, ... ). Because all embedded sets start with an element along the u, -
i+l
axis, and each element along that axis spread out into {2, M; embedded sets, then we observe that
iz2 M; ZH?;Mi =ny, (12)

i1
Therefore, ponder elements along the u, axis. The M, elements along the u, axis spread out into all the elements
along the u, axis after which each element along the u, axis spread out into [[{2; M; embedded sets. Therefore, there
area totaI of My I1;2; M; embedded sets for each node along the u, axis. Then, we obtaln
My 123 M; = Hz 1 =Ny, (13)

Contlnumg in thIS way up to the u, axis, where N is nearing to infinity. In this case, ponder elements are along

the u,, axis. The M, _,elements along the u,_, axis spread out into all the elements along the u,, axis after which
each element along the uy axis spread out into [152 .1 M; = [1{24+1 M; embedded sets. This means that there are a
total of [TV M; * [172 ., M; embedded sets for each node along the uy_,. axis.

Note that

H M * Hl N+1M - nN—wo ’ (14)
i#N
S0, we proved

ny = ﬂMi (15)
i=1

i#l
Next, what we do is to repeat term 1 in (5) n, times, upto last term in (5) ny_, times (since 4; U 4; = 4,), as the
foIIowing

"Naoo MN-oo
A - 1/u1]]/x1 u..u j 1/uN—>co,j /xN—>oo (16)
i= i=1 j=1

Now, we must prove that (16) can be reorganized as in (11). We do this by proving that (16) has exactly the same
countable-infinity number of elements as does (11). Since, each A% has countable-infinity number of elements, and
then A4 in (11) has ny_. = (N = ) * [[¥5° M; elements. From (16), A has n;M; Un,M, U ...U ny_,,My_,, Of
elements. However, from (15), we obtain:

N->oo N->oo N—-oo N—-oo

nyM; UnyMy U ..U nyLeoMy_Le = HMUHMU ul—[M_(N—mo)*l_[M 17

Consequently, we have proved Equatlon (16) has the same countable infinite number of elements such as (11).

Corollary 1:
We can express T2 FS for all of the secondary degrees of an IT2 FS as:
A=1/DoU(4h), (18)
where
NN-co NN-c0 N—oo
DOU(4) = f Al = f f /o = {[ua 00, @), veex), (19)
k k k

in which X, is a continuous universe of discourse, which means the DOU(A) contain a countable-infinity number of
functions that completely fills the space between 4(x) and i ;(x) for v x € X_.

Proof:
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Since, Az = [~
A =1/A;

From (20), each A% in (11) can be expressed as 1/A%, then,

NN-co NN-oco

A= kf 1/A% = 1/ kf Ak =1/DoU(4)

3. SET-THEORETIC OPERATIONS ON
TYPE-2 FUZZY SETS
The main aim of this section is to derive formulas for
the intersection and union of N IT2 FSs of an IT2 FS,
because these operations are used in an IT2 FLS. In
this Section, the derivation of the intersection and
union of N IT2 FSs is based on tow concepts: 1) the
concept of embedded 1T2 FSs such as theorem 2.1; 2)
the concept of Extension Principle such as theorem 3.

; - / [/\&Ai(x), /N\ﬁg,(x)
UA /[\/“A @), \/#A (x)l Vx€EX,

Proof:

,Vx €X.

[1/u;]/x; and A = fl’:w u;/x; , then we obtain:

(20)

(1)

Third part contains the derivation of the meet and join
of N IT2 FSs, [Karnik et al. 2001, 1999, and 1998],
[Mendel et al. 2009, 2007, and 2002].

Theorem 3.1: Derivation the intersection of N-T2
FSs depending on the concept of the embedded 1T2
FSs

The intersection and union of N IT2 FSs, 4; (i =
1, ...,N), are given by (22) and (23), respectively:

(22)

(23)

Since the proofs of parts 1 and 2 are similar, therefore we only provide the proof for parts 1. Consider N IT2
FSs 4; (i = 1, ..., N). From Theorem1 and Corollaryl, it is follow that:

na, TLAN naq TLAN

i- | »

k1=1 kN=1 k1=1 kN=1

In.n f ARN = j JA n. nA’,s’g=1/DOU<[in>, (24)

Where ny,,t=1,..,Nandki = 1,...,n,,, denote the countable-infinity number of embedded IT2 FSs that are asso-

ciated with 4;, and

na, nay
DOU(ﬂA) JA n. ﬂA
k1=1 kN=1

Now, we must compute the intersection of the n, X ... X n, pairs of embedded T1 FSs Al

(25)

(i=1,..,N).Recol-

g’

lect that the intersection of N T1 FSs is a function as the fowlloing:

N

ki _ i P
ﬂAiEl =min {MAl;é(xj);HAgé(xj), --.:#Al&l\é(xj) } j=1..N

(26)

i=1
Equation (25) isa set of n, X ..Xn,, functions that contain lower and upper bounding functions since all p i (x;)
g

are bounded for all values of x;. Each primary membership is defined over a continuous domain, n,, — oo, and the

multiple infinite intersection of embedded T1 FSs in (25) contains lower and upper bounding functions, because 4;
each have a bounded DOU. We now obtain formulas for these bounding functions. For each 4;, t4,(x) and ﬁji(x)

denote its lower MF and upper MF. Consequently, be true that

inf min i o) g G, o gy ) | = mim {4, (0,1, @0, 1y (O}, V€ X,
N

= /\E“Ti(x)’ Vx€eX,

V ki

- /\ﬁﬁi(x), Vx€EX,
i=1

From (24)-(28), we obtained:

27)

sup min {uAkl (x), Has2 ), - ’/’LA'&’Z(XI') } = min {ﬁﬁl (x)'ﬁﬁz (), ""HAN(’C)}' Vx€X,

(28)
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QAi:l/le ...kazlA’{;n...nA’,‘v’; N N
= 1/ [, QA - A O, By A . AT O] =1/ I Nwaco, /\Hgi(x)l (29)

Theorem 3.2: Derivation the intersection of N-T2 FSs depending on the concept of the Extension Principle
Let A; T2 FSs in a continuous universe X,. Suppose ra,(x) = fu Jixw)/u;, (i =1,..,N)and V x € X, be the

membership degrees of A;, where u; € J*. Then membership degrees for intersection and union of type-2 FS have
been defined as follows:

ﬂAi < ﬂﬁln...nﬁ,\,(x) = f f (91x(u1) *ox ng(uN))/T(ul * Lk Uy) (30a)

= u u
t u1€Jx  UNE€Jx

UAi(:)liﬁlu...UAN(x)z f f(glx(ul)*---*ng(uN))/T(u1V---VuN) (30b)

u u
u1€jx  UNEJx

Proof:

We only provide the proof of (30a), because the proof of (30a) is similar to (30b). Consider N T2 FSs, 4; (i =

1, ..., N) in continuous universe of discourse. From the general case of (4) and since p;(x,u) = fuex uz(x)/x, we
obtain:

N
ﬂ“ii < ﬂﬁln...nﬁ,\,(x' u) = J ﬂAln...nAN(x)/x
i=1

X€EX

=f fgx(”)/”/" 31)

x€X |uej}c[o,1]

in which,
gxW)/u
uej¥co,1]
=T J 91xWi)/uy, j Jox W) /Uy, ..., j Inxuy)/uy |, (32)
ui€j#<[0,1] uy€j¥c(0,1] un€ej#<[o,1]

=T (g, (), 14, (), o 2, (),
where T is a t-norm function of the secondary membership functions because the intersection of N type-1 fuzzy sets
is equivalent to the t-norm (e.g., minimum or product), i.e. Ti’ilygi(x), and u 4,(x) are type-1 fuzzy sets. Observe
that, from the Extension Principle, (see appendix a), equation (a-2) with (32), we obtain:

T f91x(u1)/u1;---: ngx(uN)/uN

u1€J¥ ) un€ejy )

= f f (Gux @) * v G Up)) /Ty, oovy Uy) (33)
u1€J}  unesy
If T is the minimum operation *, then T (u, ..., uy) = u, * ... * uy, therefore, when (33) is replaced into (31) for
Ha,n.ndy(X) We obtain:

pinan@ = | g/

uej¥c(o,1]
N
ﬂAi < ﬂAln...nAN(x) = f f (glx(ul) *ox ng(uN))/T(ul * ok Uy) (34)
=1 ur€j¢  un€es
=pz, () Mpg, ) N..Nug, (x)  Vx€X, (35)
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in which 1 denotes the so-called meet operation. The use of the observation pz, (x) M ... M pg, (x) to indicate the
meet between the secondary membership functions u4, (x). Therefore, we should be proving the meet operation be-
tween pz (x) (i = 1,...,N), in (35) using theorem 4, [Mendel et al. 2009, 2004 and 2002].

Theorem 3.3: Derivation the meet operations of N-T2 FSs depending on the concept of the secondary MF
Suppose that we have n convex, normal, type-1 real fuzzy sets A; described by membership functions a; respective-
ly. Let x; be real numbers such that x; < x, <+ < x, and a, (x;) < -+ < a,, (x,,), then,

n

\/ai(a), a<x

i=1
k

N
Hasn.na, (@) = ﬂAi = /\ai(a), X Sa<xp,l<k<n-1 (36)
i=1 i=1
n

/\ai(a), a=x,

i=1

Proof:
In general, evaluating the meet operation is difficult to do for arbitrary T2 FSs. When n = 2, the meet operation be-
tween A, and A, can be expressed as:

2 2 2
ﬂAi= f f/\ai(xi)//\xi 37)
i=1 X1 xp =1 i=1
For each pair of points {x,, x,} such that x, € A, and x, € A,, we compute the minimum of x; and x,, and the min-
imum of their memberships, so that x; A x, is an element of A; N 4, and a, (x;) A a,(x,) is the corresponding de-
gree of membership.

Every resulting set element is obtained as the min operation result on one or more {x;,x,} pairs, and its membership
is the minimum of all the min operation results on memberships of x; and x,. When a € A; N A, is the minimum
operation result on some pair {x;, x,}, s.t. x; € A; and x, € A,, then the pairs being {x,, a} where x; € [a, ) and
{a, x,} where x, € [a, ). The process of computing the membership of @ in A; N A, can be divided into three
steps:

(1) For all x; € [a, ), find the minimum between the memberships, thus find their supermom.

(2) For all x, € [, =), find the minimum between the memberships, thus find their supermom.

(3) find the maximum of the supermoms that resulted from (1) and (2), as the following:

Ka,na, (@) = (x 21[111300){“1 (x1) Aa, (a)}) v <x 2I[me){a1 (@) Aa, (xz)}) (38)
=|a (@A Sup (1) |V {ai(a) A S a (xz)) (39

Next, we divide « into three intervals: @ < x;,a € [x;,x,),and @ = x,
a. When a = a; < x,, because a, and a, both are non-increasing in [x;,, ), sup a;(x;) = a,(a) and

X1€[a,0)
sup a,(x,) = a,(a); then, we obtain:
Xp€[a,0)
Hayna, (@ = 4@V ay(a), Va<x (40)

b. Whenx; < a = a, < x,, we remember that a, (x;) = 1 and a, is non-increasing in [x,,, ), thus,
sup a;(x;)=1land sup a,(x,) = a,(a),then, we obtain:

x1€[a,) X €[a,)
Hayna, (@) = ax(@) Vg (@) Aay(@)] = ay(a), Vx, Sa<x, (41)
c. When a = a; = x,, a; and a, have achieved their minimum values; then, . Sel[lapoo) a,(x;) = a;(a) and
sup a,(x,) = a,(a), therefore, we obtain: '
x5 €[a,0)
Maina, (@) = (ay(@) Aay(a)) vV (a1 (@) Aa, (a)) =aq (@) ANay(a), Va=x, (42)

From (40)-(42), we obtain:
a, (@) Vay(a), a<x
Hasna, (@) = a; (), Xpsa<x (43)
a (@) Aay(a), a=x,
Note that, because a, and a, are normal and convex with a, (x;) = a,(x,) = 1, therefore a, V a, is non-decreasing
in (—o0,x;], a, is non-increasing in [x;, x,], a; A a, is non-increasing in [x,, ).
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From these three notations, we see that 1,4, is non-decreasing in (—, x;] and non-increasing in [x,, o), then

Ha,na, 1S cOnvex. As well as, iy, ng, is normal with u, 4, (x1) = 1.

Next, when n > 2, from associative law, we obtain A; M A, M A; = (4; N A,) N A, therefore, from (43) we have:
Haina, (@ Vaz(a), a<x

Ha,nA,nAs (@) =4 a;(a), X1 < a<x, (44)
Ba,na, @ ANaz(a), a=x3

Since x, < x5, we can rewrite (43) and (44) as:

(al(a) Va,(a), a<x {MAlnAZ (@) Vvaz(a), a<x
a,(a) X S a<x, a,(a) x; <a<x,
= and =
Hasnay (@) { a (@ Nay(@), x,<a<x Hayna, na; (@) | Hayna, (@ Aaz(@),  x; Sa<x;
kal(a) ANay(a), a=x; LuAﬂ'lAz (@) ANaz(a), a=xg
3
\/ a;(a), a<x
(al(a) Va,(@)Vas(a), a<x iil
()_{CH(CZ) XnSa<x_
Hanana; \@) = a,(@) A ay(a), X, <a<xs /\ai(a), X Sa<xq,1<k<2
\a,(@) Aay(@) Aas(@), a2 2, =1
/\ a;(a), a=x;
i=1

Itis clear and direct to show that A; 1 A, M A3 is also a convex and normal set, because it is depend y4, 1,4, that was
convex and normal set. Then, (43) can be applied again to obtain iy, n4,na,n4, 8 the following:
(a1 (@) Va,(@)Vaz(a) Nay(a), a<x

ay(a) X S a<x,
Hainanasna, () = { a;(a) A ay(a), X, S a <Xy
la, (@) Aay(a) Aaz(a), X3 < a <Xy
a (@) Aay(@) Aaz(a) Aag(a), a=x,
(4
\/ai(a), a<x;

i=1
k

= /\ai(a), Xp S @< X, 1< k<3 (45)
i=1
4

/\ai(a), a=x,

i=1
Continuing in this modality, we obtain (36). From this approach note, it is based on modeling a secondary MF.

4. INTERVAL TYPE-2 FUZZY LOGIC SYSTEM

We assume that all the antecedent and consequent fuzzy sets in the rules are T2. A FLS is T2 as long as any one of
its antecedent or consequent FSs is T2. The rules structure remains the same in the case of T2, but some or all of the
FSs involved are T2, [Melgarejo et al. 2004], [Zeng et al. 2008]. The T2 FLS hasn inputs x; € X, ..., x,, € X,;, and
output y € Y, and, is described by L rules, where the [** rule has the form

R!:ifx, is A and...and x,is A}, then yis B!, [=1,..,L. (46)

If all of the antecedent and consequent T2 FSs are IT2 FSs, then we call the resulting T2 FLS an IT2 FLS. A rule-
base contains four components: rules, fuzzifier, inference system, and output processing that consist of defuzzifier

and type-reducer. The outputs of the T2 FLS are the type-reduced set and the crisp defuzzified value, [Mendel et al.
2009, 2007, and 2002].

4.1. Type-2 Singleton Fuzzification Model
From the rule (46), let A, AL, ..., AL, be IT2 FSs in continuous universe of discourses X; ., X, ..., X, respectively,

and B! be an IT2 FS in continuous universe of discourse Y,. Decompose each Ail into its ny, > o0 (i =1,...,n) em-
bedded IT2 FSs A¥i" | as the following:

lg
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nAi
Ail= ngl=1/DOU(Ail), i=1..,n, (47)
ki=1
where
ny. Nxfam
~ 1 i .
DOU(Ai)z fA’“ = f f ull [xy, ukl €], < [0,]. (48)

ki=1 ki=1 j=1

We also decompose B! into ny — o embedded 1T2 FSs l?g‘l, whose domains are the embedded T1 FSs B,fél; we see
that B! can be expressed as:

ng—oo
El:f BK' = 1/D0U(BY) (49)
k=1
where
ng-o ng—oo Ny—oo
~ l
DOU(B') = f B = f f vf [y, vf e Jy; € 10,1] (50)
k=1 k=1 j=1

Cartesian product of antecedents, 4" x ... x Anl has ([T, na,) — oo collections of the embedded T1 FSs, A{bel. The

relationship between A-l antecedents and consequent B! can be represented by:
PatpGV)=pgr a1 gy =pge 2 1()+up ()

=t 1Ge) b G F () = [s, 1G] i), (51)
where it has been supposed that Mamdani implications are used multiple antecedents are connected by or (i.e. by S-
norms), S is short for an S-norm and + represents the max S-norms, [Zeng et al. 2008].
In general, there are L rules that describe an IT2 FLS and repeatedly more than one rule fires when input is applied
to that system. Consequently, we have n,, X ...x n, X ng collections of embedded T1 antecedent and consequent

FSs, which generate all fired output sets for all collections of antecedent and consequent FSs, as the following,
[Mendel et al. 2009, 2007, and 2002]:

7M1ﬁw NAR 2P ng—oo
po= [ [ | wamn®), vyer (52)
k1=1 kn=1 k=1

The relationship between the consequent D!(y) in (52) and the DOU of the T2 fired output FS is made a summary
by theorem 5a, [Wu and Mendel 2012, 2007 and 2002].

Theorem 4.1.15a: The output D!(y) in (52) that calculated by using T1 FS is the same as the DOU of the T2 fired
output FS, which is calculated by using T2 FS.

Proof:
The fired output of the collection of the kit* embedded T1 antecedents FS and the k%" embedded T1 consequent FS
can be calculated for SF using Mamdani implication. If 4;" is a type-2 FS, the membership function is defined by
equation (17):

_(1/0 x; # xl’}
Mﬁil(xi) B {1/1 x; = x;)
then, from (51) and (53) we obtained:

Hpler, .. knjo ) = [Si":l /,tAkiz(xi’)] + #B,’;l(y)’ Vyevy,, (54)
lE
in which the bracketed term is often referred to as a firing interval, in which

Stiu iz(xf)=S-"=1[u ax), iz(xf)]
14 A& 1A L _A& L A% L

(53)

= [S{Ll EAkil(xl{)’ Sk, ﬁAkil(xD] = [E(x').a(x')] = A(x") (55)
lE g
Since, Upi(er, . ki) is limited by [0,1], then D'(y) in (52) also have to be a limited function in [0,1], and it con-
tains an infinite and countable-infinite number of elements, so can be expressed D!(y) as:
D) = [upt ), s Fie )], Vyey, (56)

Now, a collection of ngz = ny, X ...Xn, X ng functions, where
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upt(y) = inf L Mol dnn@), YYEY, (57)
l_lﬁl(y) = Sup ﬂDl(k1 Jkn k)()’) VyerY, (58)

Y k1,..
Equations (57) and (58) denote the lower and upper bounding functions of D!(y), respectively.

Next, suppose ujlz(xi) and ﬁﬁlz(xi) denote the lower and upper MFs for Ail, thus pz:(y) and iz (y) denote the
Ba, ; L
lower and upper MFs for B!. As well as, suppose EAil(xi) and ﬁAil(xi) denote the embedded T1 FSs associated
with ﬂﬁlz(xi) and ﬁﬁlz(xi), respectively. We observe that 1, :(x;) and HAil(xi) are two of the (nAi - oo) embedded
—A4i i —7

T1 FSs that are associated with Ail. Also, pzi(y) and i (y)denote the corresponding embedded T1 FSs of pz:(y)
and 11z (), respectively. Depending on (54), we tried to calculate the infimum of w10 1) () by choose the
smallest embedded T1 FS of both the antecedent and consequent. Consequently, we obtain the following equation,
[Mendel et al. 2009, 2006, and 2004]:

tpy) =[Sy, GD] F @), VyEY, (59)
Similarly, we choose the largest embedded T1 FS of both the antecedent and consequent in order to compute the
supermom of fyiqey  wn iy (¥), then, we obtain the following:

Ap ) =[Sy A D] +E (), vyer (60)
Comparing Equation (56) with (19), and from (55), we obtain:
D'(y) =DOU(D) = [ En )|  Vyer.

= @) +pp )T ) FEu)]| = [T+ [ Ex)],  Vyer. (6D

Moreover, from (18) we derive that, D' = 1/DOU(D"). Then, we have been able to obtain the DOU of the T2 fired
output FS using T1 FS mathematics.

4.2. Type-2 Non-singleton Fuzzification Model

Let the n-dimensional input is given by the IT2 FS, and we suppose X; denote the IT2 FSs describing each of the n

inputs. More specifically, X;,X,, ..., X, are IT2 FSs in continuous universes of discourse X; ., X, ..., Xpc. There are
L rules that described an IT2 FLS, and repeatedly more than one rule fires when input is applied to that system. De-
compose 4; into their ny, — co (i = 1, ...,n) embedded 1T2 FSs X/, i.e., [Castro et al. 2008], [Mendel et al. 2009,

2007, and 2002],

nx;—o

XL-=J Xh i=1,..,n (62)

g’
hi=1
The domain of each X/ is the embedded T1 FS X", The Cartesian product be X x X, x..xX,,
has (H LNy, ) - collectlons of the embedded T1 FSs X, then the MF of a fuzzy Cartesian product is given by:

g

Ux, () + ...+ ﬂxn(x1) =5 lixi(x ) (63)
Since, each rule determines a fuzzy set D in Y such that when we use Zadeh’s sup-star composition, note that:
hot0) = sup (1, ) + o, o)) H i, Gw)|, yey

XX EX¢ i
= sup [ty () + Sty g 1 G) F )] = sup {1y e, ) + g )]+ 0] (68)
XX EX¢ XX €EXc t

Then, we have derived the formula of NSF as the following:

tpi(y) = S?=1< Sup iy, () + pg, (xl)> tup(y), Vyey (65)
Xi€Xic

Since, there are ny — oo embedded T1 FSs for the consequent, (n, = [T, nAi) — oo embedded T1 FSs for the an-

tecedents, and (ny = [T, nXi) — oo embedded T1 FSs for the inputs; then, we obtain (nX1 X oo X

Ny, XMy X.. XN, X nB) collections of input, antecedent, and consequent embedded T1 FSs as shown in Fig. 4,
which generate p,,:(y) as the following, [Mendel et al. 2009, 2006, and 2004]:

Nx,-00 MNXp-0 NAj-00  MNAp—c0 Ng—00

tpi(y) = f f f f f 1Dy, hn s olenie) Y (66)

hi=1 hp=1 kq=1 kn=1 k=1
In order to represent the structure of ,,:(y) using network, we depict (66) through Fig. 4, for a single-antecedent
rule.
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Bi » Hp111) (62) \

B;}B”“’ _ #D(l,1,1,n3)(3’)
B _— #0(1,1,;1A1,1) o)

=
[>T
[

7\
A
Wi

BT ——» luD(l,l,nAllnB)(y)

Bf  ———p Hp(1ny,1np) (62)
AL . . :

BrF”® 3 Up(1my ng, 1))

. anl_’m/ . . .

: E, . - :
\ Bé EE— #D(l,nxl,nAl,nB)(Y)

Ny, 00 H . .

AE 11 / I .

g — :uD(l,Tl;llnAlrnB)(y)
b

B
/ B} - 5 Hpaiiy 6]

B"B7%®  —————9 UD(1,1,1,np) 6]

BY  ———> tp(any 1))

o2
3

\ P .
AEn / : : :
. I BgB_’m _— ﬂD(l,l,nAl,nB)(Y)
Xn : : : : :
- / Bé > ﬂD(l,nxl,l,nB)(y)
Ag : : :
n . . .
/ \ B;""”" —» HD(l,nxl,nAl,l)(y)
Ny, —00 = = =
Xe,! : : :
\ / Bé —_— ﬂD(l,nXl,nAl,nB)(y)
nA —00 L] ] L]
AEn : = n

i B;lB_)w R L HD(l,nxl,nAl,nB)(y)

Fig. 4. Fired output FSs V np, = ny X ny X ng collections of the embedded T1 antecedent and consequent FSs for N Antecedent

rules

Theorem 4.2.1 3b: The output D'(y) in (66), calculated by using T1 FS is the same as the DOU of the T2 fired out-
put FS, which is calculated by using T2 FS.

Proof:

The fired output of the collection of the hit" embedded T1 antecedents FS and the h" embedded T1 consequent FS
can be calculated for NSF using Mamdani implication. Depending on a formula (65) of NSF, we could calculate
upt(y) as the following:

Nx,-00 MNXp-0 NAj>00  MNAp—s0 Ng—00

uDl(y)=h1£ f f f

1 hp=1 kq=1 kn=1 k=1

+ up ),

Sit1 ( sup py, (x;) + llAil(xi)>

Xi€Xic
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NX;—o00 NA;—00 ng—oo

-/ [ [S?:l(sup b ) + uAiz(xi)>
1 ki=1 k=1 Xi€Xic

hi=
Note that ppic, k. ki () 18 limited by [0,1], then D*(y) in (66) also must be a limited function in [0,1], and it

contains an infinite and countable-infinite number of elements, so it can be expressed D'(y) as:

+uny), Vyey, (67)

D'O) =y @), B ] Vyer, (68)
Now, a collection of (nygs = ny, X .. X Ny, X1, X...X N, Xn,) - oo functions, where

Kot = i POl ks e i) V) VY E X (69)
H5(y) = sup HDl(hl,...,hn,kl...,kn,k)(y)' VyerY (70)

V Ry, Kk k
Equations (69) and (70) denote the lower and upper bound functions of D*(y), respectively.
Next, suppose pug, (x;) and ﬁii (x;) denote the lower and upper MFs for X;. Additionally, suppose px, (x;) and

Hxi (x;) denote the embedded T1 FSs associated with B (x;) and ﬁfi (x;), respectively. We observe that I, (x;)

and ﬁxi (x;) are two of the (nXi - oo) embedded T1 FSs that are associated with X;. For Ail, suppose E,ii’(xi) and

Hﬁlz(xi) denote the lower and upper MFs for A,-l, therefore u5:(y) and 15 (y) denote the lower and upper MFs
; L
for B'. Aswell as, suppose EAil(xi) and ﬁAiz(xi) denote the embedded T1 FSs associated with Eﬁ_z(xi)
and ﬁﬁiz (x;), respectively. We observe that EAJ(X!’) and ﬁAil(xi) and are two of the (nAi ) ) embedded T1 FSs

that are associated with Ail. Also, ppi(y) and i (v) denote the corresponding embedded T1 FSs of pzi(y)
and g (), respectively. Depending on (65), we tried to calculate the infimum of wpi k) ko1 (7) by choos-

ing the smallest embedded T1 FS of both the antecedent and consequent. Consequently, we obtain the following
equation, [Mendel et al. 2009, 2006, and 2001]:

b5t () = inf ppi e 0@) = S?zl(SUP Ha, () + EAil(xi)> +up(y), VyeY, (71)

V hykik Xi€Xic
Similarly, we choose the largest embedded T1 FS of both the antecedent and consequent in order to compute the
supermom of ppie, b g1y (¥), then we obtain the following equation:

Hp(y) = ,sup Hplnyrei @) = [Siz1 ( sup iy, () + ﬁAil(xi)> +up(),  Vyery, (72)

ki | Xi€Xic ]
Comparing the Equation (68) with (19), we obtain:
D'(y) = DOU(DY) = [up») (|, VyeY (73)
Moreover, from (18) we derive that
D' = 1/pOU(DY) (74)
Consequently, we have been able to obtain the DOU of the T2 fired output FS using T1 FS mathematics.
5. THE OUTPUT PROCESSING tained within DOU(D"). Therefore, we obtain a set of
Type-Reduction (TR) is a first step of output pro- np numbers that have both a minimum and maxi-
cessing, in order to compute the centroid of an IT2 mum element, ¢,(D) = ¢, and ¢, (D) = c,, respec-
FS. We are derived to compute the centroid of an 172 tively. The centroid of each of the embedded T1 FSs

FS because when all sources of uncertainty disa_lppear, is a limited number. Related with each of these num-
the IT2 FLS must reduce to a T1 FLS. We define the bers will be a membership degree of one as the fol-

centroid (Cp) of an 172 FS D such as the set of the lowing, [Karnik et al. 2001], [Wu and Mendel 2012,
centroids of all of its embedded IT2 FSs. depending 2007 and 2002], and [Salazar et al 2011]:

on (18) and (19) note that, we must compute the cen-
troid of all of the n, - o embedded T1 FSs con-

Y )
The generalized centroid [c;(D), c,(D)] is a closed interval, ¢, and ¢, can be computed from the lower and upper
MF of 4 as follows:

c;(D) =min {centroid of all embedded T1 FSs in DOU(E)}:%iRn (C(AEI))
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~ flwx,uAEl(x)dx o fllxﬁg(x)dx+f:1xﬁg(x)dx
cl(D)—mln T 5. | =min

LER *® I — =) (75)
J; Hag, (x) dx S () dx + fz+1ﬁﬁ(x) dx
¢;(D) = max {centroid of all embedded T1 FSs in DOU(D)}= max (C(AET))
R “x . (%) dx [Mxuz(x) dx + [ x 7 (x) dx
Cr(D) = max <f10°,4+> = max( L = = T;r,l — 4 (76)
reR \ [ pap, () dx ) TR\ [T pa() dx + [ () dx
in which Hag, and uAErdenote embedded type-1 fuzzy sets as the following:
(), ifx<l,
Hag, () = &g(x), if x> 1, (77a)
ui(x), ifx<r,
=4z 77
Hag, () {ﬁﬁ(x), if x> 7. 7

where [, 7(€ X, € R) are switch points that mark the change from z;(x) to EA(X) and from EA(X) to u;(x), respec-
tively. uz(x) and 4 (x) are respectively the lower and upper membership functions of A. See Fig. 5., Salazar et al.
2011. There are different kinds of type-reduction as center-of-sums, height, and center-of-sets type-reducers.

Mslx)
ES]

Membershin w,[x)

Fig. 5.3 Interval Tvoe-2 fuzzy set (b1 Explanation of the switch point | (c) Explanation of the switch

5.1. Derivation of Type-Reduction for Interval T2 FLS
The general form for continuous domain in order to calculate the different kinds of type-reduced can all be giv-
en by, [Mendel et al. 2009, 2007 and 2002], [Salazar et al. 2011]:

Yre(YS, .., Y™, AL ..., A®)

yielyi vt y®elyP ) ale[glﬁl]

where each one of y},y},a'@ (i=1,..,0)and L
have various meaning, as follows, [Mendel 2004]:

1. In case of centroid and center of sums be y} =

yt, the i" point in the sampled universe of dis-

course of the FLS’s output, al,@ be the single
(or sums of all rules for COS) of lower and upper
membership degrees for the i* sampled point;
contains antecedent and consequent MF parame-
ters, and L is a number of sampled points.

2. In case of center of sets be y},y left and right
endpoints of the centroid of the consequent of
it" rule. While with height TR isy} = v, a sin-
gle point in the consequent domain of it rule,
treated as a consequent parameter. In the COS

Now, we assume that,

L=oco =
fi=1 yl al

S, ..., ak=*) = ==

,a ;
i=1 a

L=co ;
1A 1A

Jiey V'@
L=co ,

1A

=1 @

j 1/ (78)
a°°€[g°°,&°°]
and height TR,gi,El be lower and upper firing
degrees for the it" rule; contains antecedent MF
parameters, and L is a number of rules.
Because all the memberships in an interval type-1 set
are crisp then we represent an interval set by its do-
main interval. It can be represented by its center and
spread as [c —s,c + s], wherec = (r + 1)/2 and s =
(r—10/2, wherel left and rright endpoints.
Each Yiin (78) is an IT1 S having center ¢} and
spread s{ > 0. Each Al is also 1T1 S with cen-
ter ci and spread sj >0 (supposec} = si, Vi=
1, ..., 0). Therefore, we need to calculate its two end-
points [y, ¥].

(79
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where a’ € [c} — sk, ¢k + si] and yt € [} — s&, ¢} + sb]. Next, we explain an iterative procedure to compute left
endpoint, y, = min(S), and right endpoint, y,. = max(S), for IT2 FLS.
In order to compute (min(S)), we put yi = ¢} — s& (i = 1, ..., ) and suppose y* < y? < -+ < y®, therefore,
a) Putal=c}, i=1,..,00 andcalculated S’ = S(c}, ..., cy) by using (79);
b) Find1<h<oost y" <S <yt where e isaso small real number;
c) Weput al =ci+si, Vie[l,hland a' = c} —s}, Vi€ [h+ e, ), thus compute S” using (79) as fol-
lows:
$"=5 ((c,%k +58), o, (k4 sk), (chte —sh*e), .., (cg — s,§§°)) (80)
d) If §” =S',then stopand put S” is the minimum value of S; else continue.
e) PutS’' =S" goback to step b.
For compute (max(S)), we put yi = ¢& + s§ (i = 1, ..., %), and suppose y! < y? < - < y*. Therefore
a) Putal=ci, i=1,..,00 andcalculate S’ = S(c}, ...,cs) by using (79);
b) Find h (1 <h < )st y* <S§' < yh*e where e is a very small real number;
c) Weput al =cj—sk, Vi€[l,hland a' = c} + s, Vi€ [h+ e, ), thus compute S” using (79) as fol-
lows:
S"=S ((c,%k =SB, e, (el = sP), (chre + shre), ., (e + s,§§°)) (81)
d) If S” =S, then stop and put S” is the maximum value of S; else continue;
e) PutS’' =S" goback to step b.

This procedure of computational can be used to calculate the TR set for all of the kind reducers, with a great reduc-
tion in computational complexity.

5.2. Defuzzification
Since Yy is an interval set for all kinds of type-reduction method, we defuzzify it using the average of y; and y,,
[Mendel et al. 2009, 2007 and 2002], therefore, the defuzzified output of IT2 FLS is

g+c
) =—— (82)

6. APPLICATION OF AN IT2 FLS 6.1. Discussion and Simulation Results

The purpose of this section is to provide real medical Consider an IT2 FLS that has thirteen inputs
application for the IT2 FLS. The mathematical opera- (1, %5, ..., x;3) and one output y. Each input domain
tions in an I1T2 FLS are explained using an applica- consists of maximum four IT2 FSs, which are trape-
tion. This application cares about the heart diseases, zoids LMFs and UMFs, and theirs FOUs shown in
where we are able to determine the status of the heart Fig. 6.

for the people who suffer from heart disease or not,
that depend a range of analyzes and tests performed
for each person. Application of the heart disease con-
tains thirteen attributes (which have been extracted
from a larger set of 75): Age; Sex; Chest pain type;
Resting blood pressure; Serum cholesterol in mg/dl;
Fasting blood sugar; Resting electrocardiographic
results; Maximum heart rate achieved; Exercise in-
duced angina; Old peak (ST depression induced by
exercise relative to rest); The slope of the peak exer-
cise ST segment; Number of major vessels colored by
fluoroscopy; and Thal: Normal, fixed defect, and re-
versible defect. This data was obtained from “StatL.ib.
http://datamarket.com/data/set/22vj/”. The prediction
variable (output) is an absence or presence of heart
disease. There are 270 observations, and no missing
values.
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Fig. 6. The IT2 FSs of heart diseases inputs

and output MFs that have different uncertainty

The rule-base of the IT2 FLS has multi models for rules as the following:

RY: ifx; isAy 3 Axy iSAyy AxgiS A3 Ay iSAygq Axgis Ass Axgis Agy Ax,is A3 Axgis Agy AXgis Agy

R?:

R3:

R*:

R5:

R®:

AXygiSAgpn A

X11 IS A1 AXy5 IS Ay q AXy3 05 Az s then yisY?

ifx; IsA), ANxy iSAy i AX3 IS A3y ANxyis Ayg AXs
AXygis A A

X171 iS Ay g AXyp IS Ajpq AXy3is Ajgq theny is Y

ifx; ISA), ANxy iSAyy AX3 IS A3y AN Xy s Ayy AXs
AXygis A A

X171 08 Ay g AXy IS Ajpq AXy3is Ajg, theny is Y

ifx; ISA), ANxy iSAyy AX3 IS A3y ANXyis Ayq AXs
AXygis A A

X171 iS Ay AXyp IS Ajpq AXy3iS Ajgg theny is Y

ifx; ISA 3 ANxy iSAyy AX3 IS Az ANXyis Ayy AXs
AX19is Ajgp A

X11 IS Ayg g AXyy IS Ajpq AXy3is Ajs, theny is Y2

ifx; ISA), ANxy iSAyy AX3 IS A3y ANXy IS Ayy AXs
AX1g IS Agpp A

X11 IS Aj10 AXy5 S Ajp3 AXy3 05 AyzsthenyisY?

iSAs1 AXgiSAgy NX71S A7 ANxgis Ags AXgis Agq

iSAs; AXgiSAgy NX7 1S A3 ANXgis Ags A Xgis Ag,

ISAsy ANXxg IS Agy NX7 1S Ay AXgis Agy AXg IS Agq

ISAsy ANXxg IS Agy NX7 1S Ay3 ANXgis Agy AXg IS Agy

iSAs1 ANxgisAg1 NX7 1S Ay ANXgis Agy AXgls Ag,
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R™ ifx, isA; 1 AXp IS Apy ANX3 IS A3y AXy IS Ay ANX5 IS Agy ANXgiSAgq NX710S A7 NXgisAgy AXgis Ag,

Axqgis Ajgy A

X11iS A1 AXy5 IS Ajpq AXy3 05 AyzsthenyisY?

There are 270 observations of heart diseases divided into two parts: the first part contains 150 cases were the heart
disease absence, and the second part contains 120 cases were the heart disease presence. Each case that has thirteen
an inputs are described by IT2 FSs. Consider one case of an input vector,
x'= (Xi ’ Xé' Xé' thl-' XIS' X’6' X’7' Xé' Xé' Xio' Xil' Xiz' Xi3) =

(0.87,0.01,0.78,0.55,0.95,0.14,0.94,0.79,0.14,0.26,0.6,0.27,0.69).
The firing intervals for the first fifth rules at an input vector x’ are as the following (see Table 1):

Table 1. The firing intervals for the rules at an input vector x’

N Rl R2 R3 R4— RS R6 R

0

x a0 g, (g, D 1R, ) (a0 B, | |y, DB, | By, O g, | ey, KD bR, | |Rag, (1),
=[0.56,0.73] | =[0.6,0.86] | =[0.8,1] =[0.8,1] =[0.13,0.55] | = [0.47,0.63] = [0.5,0.67]

xy | P2 O, | Bagy O iz, | |y, (00D, | |y, (02D Wi ) |y, O02) i | Mty O | | [, (02D, 17
=[0.8,0.998] | =[0.981] =[0.83,1] =[0.83,1] = [0.98,1] = [0.83,1] = [0.83,1]

% gy (63D, 13, | | Bag, (63D, i, | (Has, (03D 17, | (Mg (x3) g, | | Pag, (K3) bz, | (s, () g, | | as s (63D 017,
= [0.793,0.994] = [0.7,0.999] | =[0.75,0.999] | = [0.75,0.99] | =[0.75,099] | =[0.8,1] = [0.75,0.99]

%, ta,, o) bz, N a3 g, ) (Hay, K0 1z, | |ay (%8s g, | (Mg, (0D bz, | (Bay, (K3 03, | [Ha,, (0D 1z, |
=[0.38,0.7] | =[0.54,0.82] | =[0.8,1] =[0.46,0.76] | =[0.67,0.88] | =[0.8,1] = [0.2,0.58]

xe ag s O bag | | Rasy (65D, g | (Has, (XD iz, | (Has, (s Hag, | |Bas, (5D Bz, | [Hag, (es) kg, | |as, (65D Bz )
=[0.7,094] | =[0.39,063] | =[0.067,05] | =[0.7,1] = [0.067,0.5] | =[0.33,0.68] = [0.43,0.67]

%y g, (%6 Mg\ |Hagy (X6 g | (Hagy (K6) Mz, | [Hag, (%6 Hag | |Pag, (X6) Bz | [Hag, (6D Hag,| | |Hags (X6) iz, )
=[0.68,0.95] | =[0.68,0.95] | =[0.68,095] | =[0.8,1] = [0.68,0.95] | =[0.8,1] = [0.68,0.95]

% s O, 13, A | R (67D, 7, | (Bag s 87D bz, | (Bay C6)s G, | (B (7D bz o [y 67D G, o | | e (67D, b7,
=[0.7,0.923] | =[0.65,092] | =[0.7,0923] | =[0.65092] | =[0.7,0921] | =[0.7,0.92] = [0.65,0.92]

%y Hag, () 1z, | |Hags (X8 Kz o [Hags (K8) By, | |Hag, (%8s gy | (Hags (Fe) iz, | (Hag, (X8 Hag,| | [Has, (6, iz, |
=[0.18,042] | =[0.17,0.42] | = [0.55,0.79] | =[0.53,0.74] | =[0.29,0.53] | = [0.22,0.47] =[0.8,1]

% [uég_l(xé),uzg_l [uég_l(xé),uzg_l [Még_z(xla),ptzg,2 [uég,l(ms),#zg,1 [uég,l(xé).uzg,l [uég,z(xé),uzg,z ) [uf_xg,z (x9), iz, |
=[0.7,094] | =[0.7,094] | =[0.7,097] | =[0.7,094] |=1[0.7,094] | =1[0.7,0.94] = [0.7,0.97]

- [uém_z(xio),uzl [uélo_l(xio),uz [Mélo_l(xio),uzl [uém,l(xio),u;: [uém,z(xio).uzj [uém,z(xio),uzj ) [ﬂdm,z(xio)'ﬂz
=[0.4,0.73] | =[0.75,1] =[0.75,1] =[0.75,1] =[0.53,0.82] | = [40.2,0.59] = [0.33,0.68]

- [uén_z(xh),uzl [Mén_l(xil),#z [uén_l(xil),uzl [uén,l(xil).uz: [uéu,z(xil).uz] [uéu,z(xil),uz] ) [uénlz(xh).uz
=[0.7,1] =[0.6,095] | =[0.6,095] | =[0.6,0.95] | =1[0.7,1] =[0.7,1] =[0.7,1]

*iy [ﬂéu_l(xiz),uxl [Mélz_l(xiz),ﬂx [uélz_l(xiz),uxl [uélzf,(xw.ux: [uéu,l(xiz).ux: [uélz,g(xiz),ux: ) [uélz,l(xiz).uz
= [0.75,0.994] | = [0.75,0.994] = [0.75,0.994] | = [0.5,0.88] | =[0.75,1] = [0.75,0.999] = [0.75,0.999]

*is [u413_3(x13),uzl [M413_1(x£3)uuz [u£13_2(x13),u;1 [ué13,3(x13).uz: [uéﬂ,z(xig).uz] [/@13,3(9613),#;] ) [uém(xis).uz
= [0.75,1] =[0.67,0.87] | = [0.6,0.8] =[0.75,1] = [0.75,0.994]| = [0.7,0.999] = [0.75,1]

For this an input vector x’, we must repeat this procedure for all rules. The firing intervals of the rules are computed using
the minimum function as the following:
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Rl [ L _1] [mm{#a“(xl] .”1-1“(12] FA“(X:;] PA,,(I.a] Ha- . (Is] Prlr,(-fs] Ha-, (x7), .UAM(-"-'B] #.—1“(1-;] .U,lu,d(me .ﬁ-'a.“z(xn) #.al“(xr .UALH(IH ]
rlaa =
min {.“_.1] g(-"ll H,q,“(-"-'z] by L(-‘z) H,q,“(-"-'n] Ha, g(xs] H,q,hl(xb] M7, g(-"?] H,g:,é(xs] .“_.1”(-"9] H,.;,,”( *10) Fh”(xu] .H,q]“(xu] H,g“.,(-"-'lz }
1. .1 =1 min{0.56,0.8,0.793,0.38,0.7,0.68,0.7,0.18.0.7,0.4,0.7,0.75,0.75}. _
R [i 2 ] " Imin{0.73.0,998,0,994.0.7,0,94,0.95,0.923,0.42,0,94,0,73, 1,0,994,1}] — [0.18.0.42]
R [ 2 —Z] [mm{“il.z(xi)"u'_lz.:(xé)'Fé:.z(xé]"u'_la.:(X'U'F‘is.l (xa"u'_lrh:(‘t:i)'f“ér-.L(x;)’Pémx(xJ?)'Fiﬂ.L(I;)’PEHI.L(IIUJ‘ F&u.:(xil)'Fi;z.L(xlr-z)’#él:e.:(xi?)}']
lata| = , . . . : . , ' . . ' ' r
min {#ﬁl.z(xl)"uﬁli(xz)"u'ﬁ:u(xa)'yﬁ'u(xq‘)"mﬁﬁ.l(x5)'Pin_L(IE‘)"uﬁ?.l(x7)'Pizl_:l(xg)"uﬁ'r.l(x‘?)"uﬁ]u_J(xm)'Fﬁu.l(x”-)"uﬁlz.l(xu)'Pil'l.l(xn)]
RZ: [az 52] _ [min{0.6,0.98,0.7,0.54,0.39.0.68,0.65,0.17.0.7,0.75.0.6.0.75.,0.6 7}, = [0.17.0.42]
tL=r " Lmin{0.86,1,0.999,0.82,0,63,0.95,0.92,0,42,0.94,1,0,95,0.999,0.87}] — ~ T
e [ 3 _.;] [mm{#illz(IUJ.Ug“(xé]-#,_13.‘(1’53:."-!.-_1,_2(1;]-#é;.z(xé]:P,_lr,_,(fé]-ﬂé.-__;‘ (1’;]:.Ug,”(xé]-#iq.z(I-EJJ.Ug“..L(Iin]JJ’Jg,L,(-’fij_]-P—'él“(xji:]:.ugwlz(xig]}-]
tleta|=| . . . . . . . . ; . ' : r
min {P‘ﬁl._,(xl]-#ﬁllz(ﬂ'z)aﬂﬁ:,lq(?‘z)-Fﬁ“(ﬂ'a]a#ﬁﬁ_z(35)-Fxn_L(-T&)aF‘ﬁ,_;(x?)-}*ﬁ!,_:,(xg]aP‘ﬁ,,._,(xej-.‘-‘-ﬁl,u(xw)-Fﬁlu(x11):.“EJ“(-"1:]-#3”.2(113)]
1. [.2 =27 _ [min{0.8,0.83,0.75,0.8,0.067,0.68.0.7,0.55.0.7,0.75.0.6.0.75.0.67}] _
R% |23 ] ~ Imin{1,1,0.999,1,0.5,0,05,0.92,0.79, 0,79, 1, 0,95,0,099,0.87} = [0.067.0.5]
R4 [ s _.;] min{“iu (xi)’lur_lz.z (xé)'f’téx.t (xé)"ur_ldj(x:‘)'#é;.z (xg)’Ff_lraz(xa]'#é.-.l(ITF"]‘lu&wz(x&)'f"tiﬂ.l(x';)’#r_lul.L(in ]’Pén.](xil-)'#iu.t (x]_:),,u&”_:‘(xig ]}
Plena =1 : , : , : . : : : ! ' / ;
min {#,1”(-"1] .ﬂ,q“(-"-'z] #,1,1(3‘3] F,a“(-’ra) Ha, 1(35] H,‘M(-Ts] P‘ﬁ,_](x?]-f-‘zt,_z("-’s]:.“E.,_](-"r’q]-.ﬂﬁ],”(-"m]-Fju_l(111):.Hﬁju(-'(51;]-#3”_3(113)]
4. [.a =47 _ [min{0.8.0.83,0.75,0.46,0.7.0.8,0.65.0.53,0.7.0.75,0.6,0.5.0.75, },
R [g,a _[mm{l1{]9990?6110920?4{]94 1,0.95,0.88,1} = [046.0.74]
RS [ s _5] mm{#ﬂll;i(Ii):Pgu(xé]-#,_13.]_(’5&]’#.-_1,_2(1;)-J’-‘é;lz("é]JF‘f_lr,_z(xé)-#é.-__;‘ (I;]JPgm(xlj;]-#ﬂq.l(x-;]:.Ug“..z(IIUJJPﬂ,Lz(-"fij_]-#iu.l(xjr_zlj.uél“(xig]}-
tlata|=| . . s . . . . ' : . ' . r
min {F‘EL;(x1]-F‘ﬁxlz(ﬁ'zjs#ﬁ;..,(-"aj-Fﬁ,.z(xq]s#ﬁr,_z(35)-Pxn_z(-’f&)aF‘ﬁ,_;(x?)-}‘ﬁz._;.(xs]aP‘*E.,.,(x?]-F‘ﬁ,.;l{(xlu)-i‘znlz(xl1:'*.“E,“(-"1:]-#3”.2(113)]
5. [.5 =571 _ [min{0.13,0.98,0.75,0.67,0.067,0.68.0.7,0.29.0.7.0.53.0.7.0.75,0.75}.] _
R[22 = [min{f].55,1,{].999,{].38.0,5,0.95.0.92,{].53,0.94. 0.82,1,1,1} = [0.067.0.3]
Re [ & _5] min{“ﬂl.:{ (Ii),,ué“ (xéj'f’tém (x;j"ur_ld.u |I‘JX‘J":I'}’tés.z (x-':)"uf_lraz(xé]'f‘é?.:i (x;]‘luém(xé)'flﬂﬂ.l(x';)’luéun.z (xio ]’Pén.z(xhj'#iu.l (xlr-:j’lu&l:e.z (xi'! ]}
Plena ]l =1 : , : , : . : : : ! . / ;
min {u“,;l g(-’ﬁ] .ﬂ,q“(-"-'z] F‘,q,,(xz] F,q,“(-'rn] Ha, i(xsl F,.gu(-’f&]JP‘ﬁ,_g(x?]-}‘zu_:,(xs]J#ﬁ.“(-’V‘i]-.ﬂﬁ],u(xm]-F-ﬁu_z(x].1]J.“E]“(xlzj-FZ].L_z(x13]]
RE: [36 Eb] _ min{0.47.0.83,0.8,0.8,0.33.0.8,0.7,0.22,0.7,0.2,0.7.0.75,0.7}, — [0.2,0.47]
L min{063,1,1,1,0.68,1,0.92,0.47,0.94,0.59, 1,0.999,0.994} o
- [ S [mm{,ﬂél_](-fi]-ﬂé,_z(x;:#gm(x;)-F;_11_z(x.;.)JP.-_15_](1';J-H,_t[,_l(x;]JP,_h_](x;)-#éa_z(fé]JP&.,_Z(x;]-.ﬂé],u(finj-Pi“_z(XJ'_JJJPél“(xizj-#i]?__g(xlrsj}
vlana = - r ] r v ¥ ¥ ¥ ’ r r r r ]
min {PEJ.L(XIJ'FHz.z (x:J"uﬁ'u ('sz"u'ﬁtz (x“J'*uﬁr-.l (15)'#ﬁral(x"]'}lz7.1 ('T?)’#ﬁlu(xg)'}lzuz (xgj'Fﬁm.z (xmj"uﬁn.z (":11)'#3:2.1 ('lej"uﬁn.'l(x” )]
RE, [gn,in] _ [min{0.5,0.83.0.75,0.2,0.43,0.68,0.65,0.8.0.7,033,0.7.0.75.0.75}, = [0.2.0.58]

~ Imin{0.67,1,0.999,0.58,0.67,0.95,0.92.1,0.97, 0.68, 1.0.999.1}

We have to complete these procedures for all rules. Consequently, we obtain the Table 2.

Table 2. The firing intervals and theirs consequents for rules

No. of rule | Firing Interval Consequent

R! [at,3'] =[0.18,042] | |y", yl_ [0.146,0.228]
R? [a2,3°] = [0.17,0.42] | | y% ¥’ | =[0149,0.23]
R? [2%3°] = [0.067,05] | [y* 7] =[0.18,0.19]
R* [a%3"] = [046,0.74] | [y*7'] = [0.162,0.174]
R [2°,3°] = [0.067,05] | [y°,5°] = [0.92,0.92]
RS [a%3°] = [0.2047] | [y®,5°] =[0.896,0.96]
R a"a"] = [0.2,0.58] | [y"7"] = [0.949,0.96]

The TR for an IT2 FLS uses the iterative KM algorithms, this may cause a computational bottleneck, even for real
medical applications of the IT2 FLSs, where it has been demonstrated that very good performance can be satisfied
by doing this. From (75) and (76), we are calculated left and right endpoints [ y,, v,] as follows:

Elyl +£2y2 +£3y3 +£4y4 +gsy5 +g6y6 4ot atym

=

=

)

@ +a?+ad+at+aS+at+otan

0.42(0.146) + 0.17(0.149) + 0.067(0.18) + 0.46(0.162) + 0.067(0.91) + 0.2(0.896) + -+ + 0.2(0. 949)

0.42+0.17 + 0.067 + 0.46 + 0.067 + 0.2 + ---+ 0.2
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_ @ 40P 4 &Y 4 'Y+ & + a4+ T

Yr 21+22+g3+g4+25+26+'”+an !
_ 0.18(0.228) + 0.17(0.23) + 0.067(0.19) + 0.46(0.174) + 0.067(0.92) + 0.2(0.96) + ---+ 0.58(0.96)
Ir= 0.18+0.17 4+ 0.067 + 0.46 + 0.067 + 0.2 + ---+ 0.58 '

Therefore, we obtained the values of left and right
endpoints y;, and y,, respectively. Finally, we are
defuzzified the interval set (output of the IT2 FLS) in
order to compute the crisp output y of the IT2 FLS
using (82). We repeated all these procedure with each
an input vectors (all observations) to compute the
crisp output y; (i = 1, ...,270) of the IT2 FLS for all
cases.

6.2. Software Performance

output of an 1T2 FLS. For performance, the program
of “IT2FLS” we need to given the rule-base and in-
puts for the problem. The above application is per-
formed using the function “IT2FLS”. A nine-point
vector [p?,p?, ...,p°] represents each IT2 FS. There-
fore, the IT2 FS A, ; is represented as (0.3 0.3 0.35
0.65 0.3 0.3 0.36 0.6 0.8), 31,2 is represented as (0.4
0.62 0.68 0.9 0.5 0.62 0.68 0.8 0.8), and A, 5 is repre-
sented as (0.65 0.95110.70.94 1 1 0.8), such shown

in Fig. 7.
First part the performance of Matlab is used a func- J
tion “IT2FLS” that is provided for computing the
' N
,3"_9&1,L I Az fa,3
PRl s |
arl b Sy, -'.I.
ae \1 " "
as ‘\\L .\\ :
asl \&f v/
[ 51 .
- .:'.-. \L\. ., . -
L e - T po
T | At
Fig. 7. The MFs A, ,,4;,,and, A, ; of the IT2 FLS for the first input
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Fig. 8. (A) Creation fuzzy set in IT2 FLS. (B) Rule-base in IT2 FLS of heart diseases application in C#

Second part of performance is performed using
IT2FLS software in visual C# that includes some
modules as the linguistic variable, the mf, the rule-
base, and the simulator editors. The linguistic varia-
ble is used to define the input and the output linguis-

tic variables. The MF is used to define the member-
ship functions related with the linguistic variable.
IT2FLS software also allows user to creating and
editing rules. The simulator is used to present an in-
teractive view of the logic inference. IT2FLS soft-
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ware does not limit the number of linguistic variables,
membership functions of linguistic variables and
rules. For our application, we have created the MFs
and the rules that are depicted in Figure 8.

6.3. Experimental Comparison

In this subsection, we compare the performance of
the four methods. We present results of a comparison
of Heart Diseases (HDs) using an intelligent architec-
ture between interval type-2 fuzzy logic systems us-
ing the IT2FLS in MATLAB and the IT2FLS in Vis-
ual C# models with type-1 fuzzy inference systems
(Mamdani, and Takagi-Sugeno). The prediction root
mean square error (RMSE) was 0.00075. Table 3
shows the various RMSE of four predicting methods,
where the IT2 FLS in MATLAB and the IT2FLS in
Visual C# evaluate the best HDs predicts respective-

ly. The advantage of using the IT2FLS predicting
method is that it obtains better results, even when
data contains high uncertainty. The IT2 provide rather
modest performance improvements over the T1 pre-
dictor.

The comparison of the predictions RMSE for three
methods is shown in Fig. 9. Observe from Fig. 9 that:
the blue line represents the prediction errors between
the actual output of HDs and prediction output using
T1 FLS, that has limitation between -0.5 and 0.5; The
green line represents the prediction errors using 1T2
FLS in C# limited by [-0.1435,0.2325]. While, the
prediction errors using 1T2 FLS in Matlab has limited
by [-0.2194, 0.1385], that are represented by the red
line. Note that, the best prediction RMSE when used
IT2 FLS in Matlab that was closer to zero.

Table 3. The various RMSEs of four predicting methods
Method of model RMSE
IT2 FLS in MATLAB 0.00075
IT2FLS in visual C# 0.0253
T1 FIS (Mamdani) 0.2441
T1 FIS (Takagi-Sugeno) 0.1988

The comparsion for three methods

The prediction root mean square emor (RMSE) +

T1FLS
IT2 FLS using C#
IT2 FLS using Matlab

L L
0 50 100

Observations of Heart Diseases

200 250 300

Fig. 9. The comparison of the predictions RMSE for three methods

7. CONCLUSIONS

This work shows that expression (11), which was
given by Mendel et al. but on discrete domain, in
order to prove an IT2 FS A is the union of countable-
infinity number of embedded IT2 FSs for a continu-
ous 1T2. We extended the derivation of the union of
two IT2 FSs, which was given by Mendel and Bob
John, to the intersection and union of N IT2 FSs, de-
pending on the various concepts such theorem 2 and
3. We presented the meet operation of N IT2 FSs de-
pending on the concept of the secondary MF such
theorem 4, which was given by Karnik and Mendel
but for the join operation. Theorem 5a and 5b provid-
ed the derivation of the relationship between the con-

sequent and the DOU of the T2 fired output for SF
and NSF. We have provided the derivation of the
general form for continuous domain to calculate the
different kinds of type-reduced, which was given by
Karnik et al. but for discrete domain. Additionally,
We applied the medical application of IT2 FLS’s to
HDs, in which it demonstrated the basic ideas and the
mathematical operations of IT2 fuzzy sets and sys-
tems. Finally, we have compared the performance of
the four methods of HDs between IT2 FLS using the
IT2FLS in MATLAB and the IT2FLS in Visual C#
models with T1 FISs (Mamdani, and Takagi-Sugeno).
The best result of RMSE was 0.00075 with the
IT2FLS in MATLAB. The prediction errors using
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IT2 FLS in Matlab has limited by [-0.2194, 0.1385],
that are represented by the red line that was closer to
zero. Our future work includes optimizing the
knowledge base of the IT2 FLS, and modeling the
IT2 FLS to neural network model on continuous do-
main.
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