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Abstract: To evaluate the phonon thermal transport at the nanoscale of nanotubes and nanowires we can use 

Boltzmann and Landauer approaches. The Boltzmann equation is coming from a semiclassical formulation, whereas 

the Landauer equation is based on ballistic models. Here we show, for teaching purposes, a simple manner of linking 

these two approaches using dimensional equations. 
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1. Introduction 
Nanostructures, for instance nanotubes, nanowires 

and nanoribbons, are structures with remarkable 

electronic and mechanical properties, which stimulate 

several theoretical and experimental studies. 

Electronic and lattice properties, such as specific 

heats and thermal transport coefficients, of nanotubes 

and nanowires had been the subject of a large number 

of researches and are continuing to attract new 

investigations [1-8]. Recently, other nanoscale 

objects, graphene and nanoribbons, had been added 

as subjects of investigation [9,10]. 
 

The thermal transport in nanosystems is quite 

interesting [4]. At low temperatures, the behaviour of 

thermal conductance in carbon nanotube bundles 

follows the power law 
T , where T  is the 

temperature and the exponent   is about 1.5. This 

shows that thermal transport in the bundle has an 

intermediate behaviour between that of  one-
dimensional systems and that of  two-dimensional 

structures. For nanowires, according to the wire 

section,   is ranging from 1 to 3. This behaviour of 

the thermal conductivity comes from sets of lattice 

vibrations where quantization is important. 

 
Here we will discuss Boltzmann and Landauer 

methods to evaluate thermal transport, as proposed in 

[11,12], for nanotubes and nanowires. This discussion 

could be useful for teaching purposes, because it is 

showing a simple manner of linking these two 

approaches, one based on a semiclassical theory, the 

other on ballistic models. 

 

2. Phonons and thermal transport 

In a dielectric material, where freely moving charges 

are not present, the thermal transport is given by 
phonons. These quasi-particles are coming from the 

quantization of the elastic vibrations of lattice. When 

the material vibrates, we have a displacement field of 

lattice positions,  hηb , where h is the position 

vector of the unit cell composed of b masses. 

The displacement fields of atoms on nanotubes can be 

composed in the similar manner, as usually done for 

three- dimensional systems [14-18], with the 

following functions: 
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where q  is the wave-vector and 
b
qε  the polarization 

vector. The expansion of displacement field  hηb  

is then: 
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N  is the number of the lattice points, bM  the 

atomic mass at position b in the cell, and pq,  the 

angular frequency for a given wave vector q and 

polarization p. As in [19], we can calculate the 

phonon dispersions. 

 

In [11,12], we obtained the angular frequencies of 

phonons, traveling along the axis of the nanotube (see 

Figure 1). Like the continuous models for hollow 

tubes, four acoustic modes are found. Two of them 
are the twisting mode in tangential direction and the 

longitudinal stretching mode in the direction of the 

tube. The other two acoustic modes are flexural 
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oscillations, where the center-of-mass of each tube 

section is moving perpendicularly with respect to the 

tube axis. This flexural motion has a double 

degeneracy in the x,y plane perpendicular to z. 

Breathing modes in the radial direction are also 

present, but they have a finite frequency  at 
zq =0, 

due to the curvature of the lattice.  

 

 

 
 

Figure 1: Armchair lattice, with lattice constant oa , 

rolled up on a tube in achiral configuration. On the 

right, we have the angular frequency as a function of 

wavenumber 
zq  for a (10,10) tube. One of the 

acoustic branches is two-fold degenerate. 

 

3. The Boltzmann approach 
Let us discuss the thermal transport in the framework 

of the time relaxation approximation. The phonon 

thermal conductivity in lattices is linked to the 

perturbed phonon distribution Qn . From now on, Q  

is the abbreviate notation for pq,


. 

We can define a deviation function Q  as: 
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where 
o

Qn  is the unperturbed phonon distribution. A 

linearized Boltzmann equation, for a solid subjected 

to a thermal gradient, can be written in the relaxation 

time approximation as [13]: 
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where qv  /QQ   is the phonon group 

velocity and Q  the phonon relaxation time. 
Bk  is 

the Boltzmann constant and T


 the gradient of 

temperature. 

The heat current density is defined, for a nanotube 

with volume SLV  , where S is the section and L  

the length, as: 
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Here, we imagined an infinitely long tube and then 

substituted the sum on the lattice wavenumbers along 

the axis of the tube,  the z-axis, with an integral.   

is an integer ranging from 2/m  to 12/m , in 

an armchair  m,m  tube,  having m  atoms on its 

circumference  [19].  

 

The thermal conductivity is defined as the coefficient 

  joining the heat current with the thermal gradient 

as TU 


 . We can use a reduced frequency and 

a dimensionless variable   defined in the following 

manner: 
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oa  is the lattice constant. In (6), we have a scale 

factor o  for the potential. Its dimensions are 

22   timelengthmass . Let us guess the phonon 

relaxation time as given by  q //L QQ   

[11]; the thermal conductivity turns out to be, after 
simple calculations: 
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The comparison with experimental data is given in 

Ref.11 and also in [20]. Let us remark just the 

following fact: L , the length of the nanotube, is also 

http://www.ijsciences.com/
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the distance between the heater resistor and the 

sensor resistor in experimental set-ups.  

 

4.  The Landauer approach 

The Landauer approach was developed for the 

physics of electronic transport in one dimension. This 
physics is quite important due to its remarkable 

observed  phenomena, like quantum Hall effect and 

quantized conductance of ballistic point contacts. The 

presence of quantization in these phenomena is 

displayed by a conductance, which is multiple of the 

fundamental quantum h/e2
. The frameworks of 

Landauer and Büttiker-Landauer theories were used 

to explain quantization [21-23]. 

One-dimensional phonon transport should also be 
possible, in nanowires and nanotubes. In Ref.23, 

authors show that, in a low temperature regime 

dominated by ballistic massless phonon modes, the 

phonon thermal conductance of a one-dimensional 

quantum wire is quantized, the fundamental quantum 

of thermal conductance G being:  

 

h

Tk
G B

3

22
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where h  is Planck’s constant. 

It is possible to link the Boltzmann expression of the 
energy flux to the Landauer expression of ballistic 

transport [11,23]: 
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carried out in quantum nanowires or nanotubes from 

left L to right R phonon reservoirs, both described by 

the equilibrium phonon distribution.   is counting 

polarization and phonon bands. P  is the 

transmission coefficient of the wire. 

Let us write Eq.5 as: 
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Substituting Q  (see Eq.4) and 

q//L QQ   ,  we have: 
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This expression can be further reduced to: 
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In this last equation, where we are passing from a 
diffusive description to a ballistic one, we are 

thinking of a phonon population which is coming 

from the reservoirs; however, let us note that these 

phonons have the dispersions proper of the tube or 

wire connecting the  thermal baths [11]. If the 

distance between the reservoirs is equal to the tube 

length L:  
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This is the Landauer formula for transmission 

coefficients equal to 1.  

This approach, proposed in [11], shows a simply 

manner of linking the semiclassical Boltzmann 

equation to the expression of Landauer ballistic 

transport. It is also possible of obtaining  a thermal 

conductance, as in Ref.23. 

According to a diffusive model, the conductance G  

of a nanotube is: 
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Of course, this expression is different from the 

Landauer conductance, which is:  
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In (15), g  is the number of acoustic modes; this 

formula works for temperatures lower than 2 K. Let 

us stress the presence, in this conductance, of the 

dimensioned factor TkF B
2 . 

To compare (14) and (15), we can use a dimensional 

approach. From (14), let us consider just  the 

dimensioned factor:  
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From (6), we can define an angular frequency ~ , as: 
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Using this angular frequency  in (16), we obtain: 
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After simplifying we have: 
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Being   dimensionless, we have that the 

dimensioned factor F of the Landauer formula is the 

same of that of the conductance found by means of  

the Boltzmann approach. 

For what concerns the Landauer expression (15), let 

us remember that in carbon nanotubes and in 

nanowires there are four acoustic modes: one 
longitudinal, one torsional, and two flexural modes. 

And then, the low temperature thermal conductivity 

have four quanta of thermal conductance. 

 

References 
1. Yi, W., Lu, L., Dian-lin, Z., Pan, Z.W., and Xie, S.S. (1999). 

Linear specific heat of carbon nanotubes, Phys. Rev. B 59, 

R9015-R9018. 

2. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999). 

Thermal conductivity of single-walled carbon nanotubes, 

Phys. Rev. B 59, R2514-R2516. 

3. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L. (2001). 

Thermal transport measurements of individual multiwalled 

nanotubes, Phys. Rev. Lett. 87, 215502 (5 pages). 

4. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., and Majudar, A. 

(2003). Thermal conductivity of individual silicon nanowires, 

Appl. Phys. Lett. 83, 2934-2936. 

5. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C. (1996). 

Science of fullerenes and carbon nanotubes, Academic Press,  

New York. 

6. Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, 

O., Xuan Wang, X.,  Ma, A.W.K., Amram Bengio, E., ter 

Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.F., Fairchild, 

S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y.,  

Cohen, Y., Otto, M.J., and Pasquali, M. (2013). Strong, light, 

multifunctional fibers of carbon nanotubes with ultrahigh 

conductivity, Science 339 (6116), 182-186. 

7. Salaway, R.N., and Zhigilei, L.V. (2014). Molecular dynamics 

simulations of thermal conductivity of carbon nanotubes: 

Resolving the effects of computational parameters, 

International Journal of Heat and Mass Transfer 70, 954-964. 

8. De Volder, M. F., Tawfick, S. H., Baughman, R. H., and Hart, 

A. J. (2013). Carbon nanotubes: present and future 

commercial applications,  Science 339 (6119), 535-539. 

9. Ouyang, T., Chen, Y., Liu, L.-M., Xie, Y., Wei, X., and 

Zhong, J. (2012). Thermal transport in graphyne nanoribbons, 

Phys. Rev. B 85, 235436 (7 pages). 

10. Zhong, W.-R., Zheng, D.-Q., and Hu, B. (2012). Thermal 

control in graphene nanoribbons: thermal valve, thermal 

switch and thermal amplifier, Nanoscale 4, 5217-5220. 

11. Sparavigna, A., and Ravetti A. (2005). Thermal conductivity 

in nanotubes and nanotube bundles, Recent Res. Devel. 

Physics 6, 173-184, S.G. Pandalai Ed., ISBN 81-7895-171-1. 

12. Sparavigna, A. (2008). Lattice specific heat of carbon 

nanotubes, Journal of Thermal Analysis and Calorimetry 93, 

983-986.  

13. Ziman, J.M. (1960). Electrons and phonons: the theory of 

transport phenomena in solids,  Clarendon, Oxford. 

14. Srivastava, G.P. (1990). The physics of phonons, Hilger, 

Bristol. 

15. Sparavigna, A. (2002). Influence of isotope scattering on the 

thermal conductivity of diamond, Phys. Rev. B 65, 064305 (5 

pages) 

16. Omini, M., and Sparavigna, A. (1997). Heat transport in 

dielectric solids with diamond structure, Nuovo Cim. D 19, 

1537-1563. 

17. Omini, M., and Sparavigna, A. (1997). Beyond the isotropic-

model approximation in the theory of thermal conductivity, 

Phys. Rev. B 53, 9064-9073. 

18. Sparavigna, A.C., and Galli, S. (2012). L'equazione di 

Boltzmann per la conducibilità termica fononica 

nell'approssimazione dei tempi di rilassamento, Lulu 

Enterprises, Raleigh, NC. 

19. Mahan, G.D., and Gun Sang Jeon, (2004). Flexure modes in 

carbon nanotubes, Phys. Rev. B, 70, 075405 (11pages). 

20. Sparavigna, A. (2006). Lattice specific heat of carbon 

nanotubes, arXiv:cond-mat/0609139 [cond-mat.mtrl-sci]. 

21. Imry, J. (1997). Introduction to Mesoscopic Physics, Oxford 

University Press.  

22. Datta, A. (1995). Electronic transport in mesoscopic systems, 

Cambridge University Press. 

23. Rego, L.G.C., and Kirczenow, G. (1998). Quantized thermal 

conductance of dielectric quantum wires, Phys. Rev. Lett. 81, 

232-235. 

 

http://www.ijsciences.com/

