
 

  

 

 

  

 

  

 

Volume 4 - January 2015

International Journal
of Sciences

Alkhaer Publications
ijSciences [ ISSN 2305-3925 ] is an open  access  journal having  expertise in
delivering high-quality and rapid publications, from online submission systems 
and in-depth peer review to an efficient, author-friendly production process.

Web: www.ijSciences.com



  

 

 

 

 

 

 

 

 Amelia Carolina Sparavigna (Correspondence) 

 d002040@polito.it, amelia.sparavigna@polito.it 

 +39-011-564-7360 

 



1Department of Applied Science and Technology, Politecnico di Torino, Italy 

 

Abstract: In liquid crystal materials, the coupling between their elastic field and an external action, such as electric and 

magnetic fields or the confinement created by free surfaces or cell walls, can give rise to periodic domains. Here, some simple 

calculations are proposed for nematics in planar cells, where undulations are caused by flexoelectricity and saddle-splay 

elasticity. 
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1. Introduction 
Periodic domains are well-known in cholesteric or 

ferroelectric liquid crystals, because these materials 

possess a natural periodic helicoidal distribution of the 

molecular order [1-3].  Periodic modulations can appear 

in nematic liquid crystals too, controlled by external 

factors such as applied fields, cell thicknesses and 

asymmetric conditions of anchoring at the cell walls [4,5]. 

An electric field, for instance, is controlling the instability 

produced by the flexoelectric effect.  

 

Periodic domains caused by flexoelectricity were first 

observed by Vistin and theoretically studied by Bobylev,  

Chigrinov and Pikin [6,7]. More recently, Lavrentovich 

and Pergamenshchick discovered the periodic instability 

controlled by the saddle-splay  elastic contribution to the 

free energy density [8]. 

 

Here we are discussing, with a simple and intuitive 

approach, the behaviours of nematics when 

flexoelectricity or saddle-splay elasticity are present. We 

will see how the free energy can be described and how it 

is producing periodic textures. The presence and value of 

thresholds for field and cell thickness are also discussed. 

 

2. Director field and its derivatives 

A fundamental vector field in nematic liquid crystals is the 

director n


, describing the local  orientation, in average, 

of molecules. This is usually a unit vector. Using it we can 

give the free energy density of a nematic cell as:  

 

      222
rotrotdiv

2
nnnnn

K
f


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Eq.1 is given in the case of the uniform elastic 

approximation. If the nematic liquid crystal is subjected to 

an electric field, we have to add another term to (1), 

2/ EDf oE


  , usually given as:  
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Analogous term is given in the case of the presence of a 

magnetic field. The term in (2) has the sign opposite to the 

well-known density of energy of an electric field in a 

dielectric; in fact, (2) is obtained by considering fixed the 

difference of potential of the cell containing the liquid 

crystal [9]. 

 

In (2), it is appearing the dielectric anisotropy   of 

nematic [10]. It is   | | , where 
 ,| |

 are the 

dielectric constants, parallel and perpendicular to the 

director. The displacement vector is given by ED


 , 

where   is a tensor. 

 

In the nematic liquid crystal we have a privileged direction, 

that of director n


, so we can consider the electric field in 

the components parallel and perpendicular to the director, 

that is E


 ||E


  E
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 . We have, in the uniaxial nematic 

phase, D


= |||| E


  + E

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can write the displacement vector in the following 

manner:  D
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Then:  
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So we have: 
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  (4) 

 

The first term does not depend on the director field. For 

this reason, it is not considered in the distortional 

contribution to the bulk free energy density.  

Besides director, there is another vector, obtained from its 

derivatives, which can be used. Let us define it as vector 

31 AAA


 : 
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   (5) 

 

A


 is the sum of two vectors: one has the magnitude given 

by the divergence of the director, the other is the cross 

product of the director with its rotor. We can find 31, AA


  

in the contribution to the bulk free energy density of  

flexoelectricity: EPfFlexo


 . 

Flexoelectricity is a property of liquid crystals, similar to 

the piezoelectric effect. In certain anisotropic materials, 

which contain molecular asymmetry or quadrupolar 

ordering with permanent molecular dipoles, an applied 

electric field may induce a distortion of the director 

orientation. Conversely, any distortion induces a 

macroscopic polarization within the material. The 

polarization vector P


 in the flexoelectric term can be 

described as:  
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In (6), we have used vectors 31, AA


, which can be 

defined as distortional Lifshitz vectors [11,12]; in [11] we 

have discussed the role of these vectors and helicity in the 

nematic free energy density.   

The coupling of polarization P


 with an external electric 

field results in the appearance of a periodic distortion from 

an initial planar orientation of the nematic cell [7]. Meyer 

showed that the infinite liquid crystal must be disturbed, 

the perturbation being periodic along the director 

orientation and the period is inversely proportional to 

electric field strength [13]. 

Flexoelectricity in liquid crystals is analogous with 

piezoelectricity in solids. In the piezoelectric materials, an 

applied uniform strain can induce an electric polarization 

and vice versa. Some crystallographic considerations 

restrict this property to non-centrosymmetric systems.   

 

3. Periodic distortions in nematics 

Let us discuss the results from [7,13], that is the periodic 

distortion in the infinite medium caused by 

flexoelectricity. The free energy density is given by: 
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      (7) 

 

in the uniform elastic approximation with K elastic 

constant, and with the dielectric anisotropy negligible. 

Moreover we assumed eee SB  . 

In the case of different flexoelectric coefficients:  
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      (8) 

 

Let us consider the director n


 in a uniform configuration, 

as a vector parallel to x-axis and the electric field E


 

parallel to z-axis as kEE


 , where k


 is the unit 

vector of z-axis. Angles θ  and   are shown in the Figure 

1. 

 

 
Figure 1: Frame of reference and  angles used for 

calculations.  

 

The components of director n


 are θ,nx cos  

,ny 0  θnz sin , when we have 0 . 

Let us consider a deformation of n


 depending on x. In the 

case of an infinite nematic medium without deformations 

of the director, the free energy density is zero. If we had a 

tilt angle variation of the form KxEeθ  , we should 

http://www.ijsciences.com/
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have a periodic deformation of director n


, with a period 

inversely proportional to the electric field strength. 

The free energy density of the distorted configuration, 

including the flexoelectric term, is:  
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   (9) 

 

Then, a periodic distortion in a non-confined nematic is 

possible because it has a free energy density lower than 

that possessed by the uniform configuration. Let us note 

that there is no threshold for the electric field. Even a 

small field gives rise to the distorted configuration. 

The existence of a threshold is a consequence of the 

medium confinement. Let us imagine a nematic material 

confined in a cell composed by two plane walls, both 

parallel to [x,y] plane, at a distance d. The anchoring 

conditions must be included in the energy balance. We can 

assume a surface energy density of the Rapini-Papoular 

form θWf 2cos , for a surface treatment 

favouring a molecular alignment parallel to x-axis. If the 

director field n


 is uniform in the planar alignment, 

Wf  . 

Let us assume, as in Ref. [7], the behaviour of the tilt angle 

in the form KxEαθ  , with   being dimensioned 

as lengthcharge . We can  integrate the free energy 

density on a volume V given by LdV  , where d is 

the cell thickness, L a fixed length in y-direction and   

the director distortion wavelength along the x-direction, 

we obtain: 
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
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2

1 2
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The last term in (10) is the surface energy contribution. In 

the case of a uniform director field, we have a total energy 

as LWFunif  . The behaviour of the two free 

energies unifdist FF ,  is given in Figure 2: we can see the 

existence of a threshold field *E .  

 

 

 
 

Figure 2: Free energy as a function of the electric field  

for  the uniform configuration and the  distorted one. 

 

 

If the electric field has a value *EE  , the stable 

configuration of the director field is that with lower energy: 

in this case, it means when the director field is uniform. 

When *EE  , the stable configuration is the distorted 

one. Comparing the two values of the total energy, that is:  

 

unifdist FF  ,             (11) 

 

we can approximately find the threshold electric field as:  
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where   02/2  ded  , to have a real electric 

field:  
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The threshold field has a value:  
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where e2 . If   22 2 eea  , and 

assuming the parameters as W  
2410 mJ

, K  

N1110 , d  m10 , we have m/Ca 1110  

and we find a threshold voltage of Volt10 .  

 

4. Flexoelectricity and hybrid cell 
Let us consider the role of flexoelectricity in a hybrid 

nematic cell. This is a cell where the nematic is confined 

between two parallel walls with different anchoring 

conditions. One surface is treated to favour planar 

http://www.ijsciences.com/
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alignment; the other is favouring homeotropic alignment. 

The cell is then known as HAN, Hybrid Aligned Nematic, 

cell. The hybrid cell we discuss has the z-axis 

perpendicular to cell walls ( Figure 3). 

An electric field can be applied parallel to z-axis: we have 

then kEE


  where k


 is the unit vector of z-axis. k


 is 

the homeotropic direction too. The unit vector i


, parallel 

to the cell walls, gives the easy planar direction. The bulk 

free energy density is given, in the elastic isotropic 

approximation, by:  
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
  (15) 

 

where the last term is due to the dielectric anisotropy   

of the nematic. 

 

 
 

Figure 3: Frame of reference for the hybrid cell.  

 

 

The surface energy density in the Rapini-Papoular form 

can be used:  
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2

k n  Wf

i n W f

HSurf

PSurf


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               (16) 

 

at the two surfaces, for d  z   and for 0z  . 

HP,WW  are energy densities of the surface anchoring 

( 0HP ,WW ). 

If we have a planar cell with surface S, thickness d, and a 

uniform director configuration in n


 , the total free 

energy is PP S WF 2 . If the director configuration 

is a uniform homeotropic one, then k n n


 ,  the total 

free energy is the sum of the energy due to the presence of 

electric field and surfaces:  FH  /EΔε εo 22

HSW2 . 

 

 
Figure 4: Free energies as a function of electric field, 

in the case of planar and homeotropic configurations. 

Note the presence of a threshold. 

 

Graphically comparing (Figure 4) the energies of 

homeotropic and planar cells, in the case HP WW  , we 

see the possibility of an electric threshold field E* : 

under this value of the electric field, it is favoured the 

planar configuration, over the threshold value, it is the 

homeotropic configuration that has a lower energy.  

In a hybrid cell, the director changes from a planar 

configuration at one of the cell wall, to a homeotropic 

configuration at the other cell wall. The tilt angle is then 

depending on z, as a function  zθθ  . The director 

field is given by: kθiθn


sincos  . 

If the anchoring is strong, the tilt angle is 2πθ   at 

0z , the homeotropic wall, and 0θ  at dz  , the 

planar wall. In the one elastic constant approximation, we 

have the bulk free energy density in the form:  
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and the surface energy density Surff  HP WW  . 

Let us represent approximately the hybrid configuration 

with a linear function of the tilt angle: 
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with 2πθo   and  0dθ . 

Then dπz 2  and the total bulk energy is: 
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Adding the surface energy, the total energy is: 

 

http://www.ijsciences.com/


 

 

 

Periodic Distortions in Nematics caused by Flexoelectricity and Saddle-Splay Elasticity 

 

 

 

 

http://www.ijSciences.com                                  Volume 4 – January 2015 (01)  

5 

 HP
o WWS S d

 

EΔεε

d

SKπ
F 

48

22

  

                    (20) 

 

Let us compare this expression with the energy of the cell 

in homeotropic and planar configurations, choosing an 

anchoring energy favouring planar and hybrid 

configurations under threshold fields:  

 

H
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The free energies are shown in Figures 5, in the case of 

suitable anchoring parameters ( HP WW  ). 

We observe two threshold fields: when the field is lower 

than E' , the nematic is planar, if the field is comprised 

between E'  and 'E' , the cell is hybrid. Above the 

second threshold 'E' , the cell is homeotropic.  

 

 
 

Figure 5: Free energy of planar, hybrid (HAN) and 

homeotropic configurations, as function of the electric 

field. Note the existence of two thresholds. One is for 

the transition between planar and HAN configuration, 

the other between HAN and  homeotropic 

configuration.  

 

As previously discussed, the electric field can be coupled 

with a polarization coming from an elastic deformation in 

the flexoelectric effect. In planar and homeotropic 

configurations, the director is uniform and therefore the 

flexoelectric effect is absent. In the hybrid cell, the 

deformation exists and gives a flexoelectric polarization 

 P


n  n  


diveS  nrot  n  


 Be . Let us add the term 

EPfFlexo


  to the free energy density:  
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θ θ E ee 
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


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cossin
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           (23) 

  

If θ  is given by (18), after integrating on the cell volume, 

we have the contribution of flexoelectricity to the total 

free energy as: 

  

  E S e e F BSflexo               (24) 

 

In principle, the coefficient  BS e  e   could be positive 

or negative, depending on the value of splay and bend 

parameters. The threshold values 'E',E'  are changed 

from the contribution of the flexoelectricity. They could 

be lowered or raised by the induced polarization (see 

Figure 6).  

 

 
 

Figure 6: The two curves (a and b) show how the 

energy of  HAN configuration changes for the 

presence of flexoelectricity. According the sign of the 

flexoelectric parameter, the threshold field is raised 

or lowered. 

 

The thresholds change according to the shape of the 

molecules. Comparing the thresholds we can estimate the 

values of the coefficients. The two electric field 

contributions in the HAN cell are:  
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If energies were of the same order of magnitude, we could 

obtain: 

 

  E d
ε

  ee o
BS

4


                       (26) 

 

In the case of a cell with a thickness of m10 , a field of 

mV 10 , and an electric anisotropy as 10.  we 

obtain:  

 

 
m

pC
 e e BS 25              (27) 

 

in agreement with Ref.14 and with other experimental 

values [15,16]. Even a giant flexoelectricity has been 

found with bent-core nematics: a peak of mnC35  was 

measured in these materials then more than 3 orders of 

magnitude larger than in calamitics [17].  

 

5. Saddle-splay elasticity, PHAN cell and threshold 

thickness 

In nematics, a more general form of the distortion free-

energy density, in the framework of the usual first-order 

continuum theory, is given as: 
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               (28) 

 

The last term in (28) is the contribution of the saddle-splay 

elasticity [4,5]. In fact, this contribution is not usually 

inserted in the bulk free energy, because it becomes a 

surface contribution when integration is made on the cell 

thickness. In addition to the anchoring energy then, there 

is an elastic contribution too. 

Saddle-splay contributions are relevant in evaluating the 

elastic contribution of thin films or membranes [12,18]. 

Sometimes, periodic distortions of the director in the HAN 

cells are observed [4,5]. Because of this periodic 

configuration, the cell is in a PHAN configuration, that is 

a nematic cell with a period hybrid alignment. Two angles 

describe the PHAN configuration: θ and φ. The last angle 

is formed by the projection of the director in the plane of 

the cell with the x-axis. The frame of reference is  xyz , 

with  xy  the cell plane and the z axis perpendicular to 

the cell plane (Figure 7).  

 

 
 

Figure 7: Frame of reference for the PHAN cell.  

 

The homeotropic wall is at 00 z , where z is the axis 

perpendicular to the cell plane. The planar wall is at 

dz 1 , where d is the thickness of the cell. The easy-

axis of the planar alignment is chosen coincident with the 

x-axis. The director n


 is described as:  

 

 senθkθ φ  j θ φ in


 cossincoscos    

              (29) 

 

The Euler-Lagrange equations are non-linear. These 

equations were solved in Ref.4, with a numerical approach 

to determine the threshold thickness of the cell between 

the planar and the PHAN. 

To grasp the role of the saddle-splay contribution, we can 

also use a simple calculation. Let us consider the tilt angle 

θ  depending on z, and the φ angle depending on x, in the 

following way:  
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The tilt is zero if 0z , and it is 2  at z = d. With Λ 

we denote the wavelength along x axis. The free energy 

density is: 
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Let us have a volume DdV  , where D  is a fixed 

distance on y axis. We have: 
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Neglecting the anchoring with respect to φ, and assuming 

just tilt anchoring, with a surface energy density of the 

form: 

2
zSurf W n f                          (33) 

 

where PWW   for planar anchoring with 0θ , and 

HWW   at the homeotropic anchoring 2πθ  . After 

integrating on surfaces of the cell: 

 

  D ΛWW F HPSurf                (34) 

  

and then the total free energy is:  

 

  D ΛWW 
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22          (35) 

 

Let us evaluate the saddle-splay contribution to free 

energy density, using Equation 4 of Ref.4. In the present 

approximation, it is:  
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 ππ
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                                                                                     (36) 

where KK  κ 244  ; after integration on a surface 

DS  , we have: 

  D K πκ   F splaySaddle
2

412              (37) 

  

Adding (37) to (35), the total energy is:  

 

    D Kπκ DWW 

Λ

d DKπ

d

DΛKπ
  F

HP

PHAN

2
4

22

12

8




         (38) 

 

Comparing with the free energy of HAN configuration: 

 

 HANPHAN FF  ,              (39) 

 

after simple calculations we find: 

  0
8

1
12 2

4
2   Λdκ     d             (40) 

The threshold value for the cell thickness:  

 

 414 κΛ  dc                (41) 

Therefore, if cdd  , we find a HAN configuration, if 

cdd   the modulated PHAN texture is displayed in the 

cell. In Ref.4, we can see the experimental observation of 

thickness threshold in a nematic sample. 

On the role of flexoelectricity and saddle-splay elasticity 

in creating the periodic distortion of the nematic director, 

we have made a discussion which is considering some 

approximations. Of course, more refined calculations are 

possible, but the present discussion is enough to 

understand the origin of thresholds for electric field and 

cell thickness in the nematic cells.  
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