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Abstract: Since entropy has several applications in the information theory, such as, for example, in bi-level or 

multi-level thresholding of images, it is interesting to investigate the generalized additivity of Kaniadakis 

entropy for more than two systems. Here we consider the additivity for three, four and five systems, because 

we aim applying Kaniadakis entropy to such multi-level analyses. 
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1. Introduction 

As discussed in [1], in the last twelve years several 

researches had been made on foundations and 

applications of a generalized statistical theory, based on 

the κ-distribution of probabilities. This distribution 

provides an entropy, the κ-entropy, which is also known 

as the Kaniadakis entropy, named after Giorgio 

Kaniadakis, Politecnico di Torino, who proposed it and 

the κ-distribution [2]. Like the well-known Tsallis 

entropy [3], the κ-entropy is a generalization of that 

proposed by Shannon in 1948. In particular, we have that 

when its entropic index κ is going to zero, this entropy 

becomes the Shannon entropy. 

 

Since Shannon and Tsallis entropies are largely used for 

bi-level and multi-level thresholding in image 

processing [4-7], it could be interesting to use 

Kaniadakis entropy for this purpose too. In a previous 

paper [8], we have discussed the bi-level thresholding by 

means of this entropy. Here, we are giving the method 

for the generalization of the additivity of κ-entropy to 

more than two systems. The application to image 

processing will addressed in a future paper. 

 

2. Kaniadakis entropy 

The Kaniadakis entropy, also known as κ-entropy [1,2], 
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has the remarkable property of having the same behavior 

of Shannon entropy, that is: 
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In (1) and (2), we have the κ-logarithm of probabilities 

 ip . The index i is running from 1 to the total number 

of configurations. The κ-logarithm is producing: 
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Let us have two independent systems A and B, with κ-

entropies 
AS   and 

BS  . In the limit 0 , 

Kaniadakis entropy becomes Shannon entropy and 

therefore we expect finding the common Shannon 

additivity of entropies. According to [11], in the κ-

calculus, the generalized sum of entropies is:  

ABBABA SSS  

  (4) 

In (4) we have: 
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In general,   is a function given by:  
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That is: 
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Therefore, in (4) we have:  

 

   AABBBAABBABA SSSSSSS   
   (8) 

ABBABABA SSSSS    2       (9) 

 

As previously told, in the limit 0 , Kaniadakis entropy becomes Shannon entropy, and therefore we must have 

the normal additivity: 

BSASSSS BBBABA 
       (10) 

In (10), 
BSAS ,  are the Shannon entropies. In the limit, 

A
  becomes 1

,


Ai

ip , and the same for B. 

Let us rewrite (9), to remark that it is symmetric when   : 
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3. For three-levels 

Therefore, if we have two independent systems A and B, the generalized additivity is:  

ABBABA SSS  
        (12) 

 

where    S . To generalize to three systems, let us imagine having two systems A and D, where D is 

given by CB  . For the additivity (12): 
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Let us use the property 
CBCB
  

 ([9], pag.482): 
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We have that: 
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And then: 
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Note that, due to the symmetry   , in (16) we have only the term in 
2 . In the limit 0 , we can easily 

see, as we did for two systems, that we have the Shannon additivity. Of course, we can generalize the calculation to 

several systems. To this purpose, let us note that, from (15) we can also have: 
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4. Four levels 
We start from:  

CBABACACBCBACBA SSSSSSS   2
  (18) 

 

Instead of C, we have DC : 

 
DCBABADCADCBDCBADCBA SSSSSSS     2
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5. Five levels 

We start from (20), but instead of D, we have ED : 
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Let us consider that 
EDDEED SS   2 

. Then: 
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Note that, we have, as usual, the symmetry   . There are 10 terms multiplied by 
2  and one by 

4 . In the 

limit 0 , we have the Shannon additivity. 

 

In the Appendix, we give, for comparison, the generalized additions for Tsallis entropy.   

 

6. Conclusion  

In this paper, we have shown the method of calculation 

it is necessary to use when we want to apply Kaniadakis 

entropy to the multi-level thresholding methods, to 

substitute in them the Tsallis entropy. In a future paper, 

we will investigate the three-level thresholding of 

images with κ-entropy, and its comparison to Tsallis 

entropy.  

 

Appendix on Tsallis entropy 

Let us imagine having a set of probabilities  ip .For 

any real parameter q , the Tsallis entropy is defined as: 
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The link between Tsallis and Rényi entropy is given in 

[9]: 
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Let us assume two independent systems A and B again. 

The Rényi entropy is additive:  
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Using (A2) in (A3), we have: 
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From (A2) and  (A4), we have: 
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Then: 
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Let us imagine two systems, A and D, with CBD  . From (A5):  
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Then:  
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And then: 
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And so on for more systems to add. 
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