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Abstract: Since entropy has several applications in the information theory, such as, for example, in bi-level or
multi-level thresholding of images, it is interesting to investigate the generalized additivity of Kaniadakis
entropy for more than two systems. Here we consider the additivity for three, four and five systems, because

we aim applying Kaniadakis entropy to such multi-level analyses.
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1. Introduction

As discussed in [1], in the last twelve years several
researches had been made on foundations and
applications of a generalized statistical theory, based on
the «x-distribution of probabilities. This distribution
provides an entropy, the k-entropy, which is also known
as the Kaniadakis entropy, named after Giorgio
Kaniadakis, Politecnico di Torino, who proposed it and
the «x-distribution [2]. Like the well-known Tsallis
entropy [3], the k-entropy is a generalization of that
proposed by Shannon in 1948. In particular, we have that
when its entropic index « is going to zero, this entropy
becomes the Shannon entropy.

Since Shannon and Tsallis entropies are largely used for
bi-level and multi-level thresholding in image
processing [4-7], it could be interesting to use
Kaniadakis entropy for this purpose too. In a previous
paper [8], we have discussed the bi-level thresholding by
means of this entropy. Here, we are giving the method
for the generalization of the additivity of k-entropy to
more than two systems. The application to image
processing will addressed in a future paper.
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has the remarkable property of having the same behavior
of Shannon entropy, that is:

S, = Z Pi |n{,(}(pii} )

In (1) and (2), we have the k-logarithm of probabilities
{p; }. The index i is running from 1 to the total number

of configurations. The k-logarithm is producing:
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Let us have two independent systems A and B, with «-

entropies S,é and SE . In the limit x>0,
Kaniadakis entropy becomes Shannon entropy and
therefore we expect finding the common Shannon
additivity of entropies. According to [11], in the -
calculus, the generalized sum of entropies is:
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2. Kaniadakis entropy In (4) we have:
The Kaniadakis entropy, also known as k-entropy [1,2],
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Sk=7 _Z(pi* +pi) k= _Z(m* +pi) (5)
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In general, I3 is a function given by:
SK=%{Z P+ pil"‘}=KSK+Z Pt = a8, +T1, 6)
i i i
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That is:
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Therefore, in (4) we have:
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As previously told, in the limit & — 0, Kaniadakis entropy becomes Shannon entropy, and therefore we must have
the normal additivity:
SAB _sAB+sBmB =sA4sB (10)

S A, S B are the Shannon entropies. In the limit, H,/j becomes Z Pj =1, and the same for B.

i,A

In (10),

Let us rewrite (9), to remark that it is symmetric when K <> —K:
SAB 2k SASE + SANB + SPIIA= 2kSASB + SA(3B - xSB )+ SB(SA — xS/

(11)
=2kSASB 4+ sASB _5ASB  gB3A _(5AgB _gAgB  gB3A
3. For three-levels
Therefore, if we have two independent systems A and B, the generalized additivity is:
SAP =82SR +5230 (12)

where I, =S, +1I1,.. To generalize to three systems, let us imagine having two systems A and D, where D is
given by B« C . For the additivity (12):

SKAUBUC _ S,'(A‘S’E;UC +SE_UCS£ _
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Let us use the property IT .7~ =TI_I1. ([9], pag.482):
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We have that:
SATIBC = sA(38 — k5B )(3C - xsC)

(15)
= SA(SBSC +x2585C — k5B3C — k5L B
And then:
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Note that, due to the symmetry K <> —x, in (16) we have only the term in &2 In the limit & —> 0, we can easily
see, as we did for two systems, that we have the Shannon additivity. Of course, we can generalize the calculation to
several systems. To this purpose, let us note that, from (15) we can also have:

JBUC _ 4gBuC HEUC:K(SBSC+SCSB)+HEHg
=K(SKSK+S,SSE)+( - kS )(’C—Ks )
=K(S,E‘S,E+S,SS,E)—K(SB’C+sC~B)+SB~C+K23 S
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(17

4, Four levels
We start from:

Instead of C, we have C U D
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5. Five levels
We start from (20), but instead of D, we have D U E :
SAUBUCUDUE
K
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2lc AcBe C~DUE DUEeBe AxC CcDUEcA~B BeCe DUE~A
+x (SKSKSKJK +SDESBSASC 4 sCsPVESASE L SBSCS) 34)

Let us consider that IPVE = 3E
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Note that, we have, as usual, the symmetry K <> —x . There are 10 terms multiplied by &2 and one by &% Inthe
limit & — 0, we have the Shannon additivity.

In the Appendix, we give, for comparison, the generalized additions for Tsallis entropy.

6. Conclusion 1
In this paper, we have shown the method of calculation S, (pi ) = _(1_ Z pqu (A1)
it is necessary to use when we want to apply Kaniadakis g-1
entropy to the multi-level thresholding methods, to . . _ . .
substitute in them the Tsallis entropy. In a future paper, -[g}e link between Tsallis and Rényi entropy is given in
we will investigate the three-level thresholding of '
images with k-entropy, and its comparison to Tsallis S = 1L|n[;|_+ (1_q)5q] (A2)

—q

q

entropy.
Let us assume two independent systems A and B again.
Appendix on Tsallis entropy The Rényi entropy is additive:
Let us imagine having a set of probabilities {pi }.For S_qAUB - S_qA + s_qB (A3)
any real parameter (, the Tsallis entropy is defined as: Using (A2) in (A3), we have:
(@1—q)Sq® =In[1+(1—q)8(f]+ln[1+(1—q)Sc?] (Ad)

From (A2) and (A4), we have:
|nb+(1—q)quU‘3]=|nb+(1—q)sq‘\]+|n[1+(1—q)qu] (A5)
e N . 1 B

=1+(1-q)Se +(1-a)S§ +(1L—0a)*>S4'S

Then:

SaB =S4 +Sg +(1—0)S4S (A7)

Let us imagine two systems, A and D, with D = B U C . From (A5):
(1-q)SABC —Infl+ @-)sA ]+ Infi+ - q)s8C] (a9)

Then:
AUBUC |_ A BUC
L+ - 0582 = a- gy o a- 5B
=1+(1-)Sg +(L-)S¢™" +(1-0q)>Ss'Se+C o)
=1+(1-0)Sg + (1—q)[qu +S¢ + (1—q)ququ]
+(1-q)25§[qu +S¢ +(1—q)qus§]
And then:
SABL _5A 4 5B L SC 4 (1-g)[sASB +52S +58SC [+ (1-g)25AsBSS  (aw)

And so on for more systems to add.
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