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Abstract: To investigate the effect of mycorrhizal fungi on reduction of drought stress on related grain yield and 

yield components of mungbean plants, a pot culture was conducted based on Randomized Completely Design with 

three replications in Urmia University in 2009. The experiment with four irrigation regimes (25, 50, 75 and 100 mm 

of evaporation from a class A pan) were assigned at the first factor and two mycorrhiza species; Glomus mosseae, 

Glomus intraradices and a non-inoculated treatment at the second factor. Results showed that in both mycorrhizae 

species significantly (P<0.05) increased the grain yield, so Glomus intraradices (4.29 g/plant) and Glomus mosseae 

(4.31 g/plant) had the highest grain yield. Non inoculated treatment had the lowest (2.64 g/plant) grain yield. The 

maximum (5.14 g/plant) and minimum (1.97 g/plant) grain yield achieved in irrigation after 25 and 100 mm 

evaporation from pan, respectively. With increasing water deficit stress decreased relative water content, pod length, 

seeds/pod, pods/plant and seeds/plant. Mycorrhizae colonization (r=0.72**), relative water content (r = 0.76**), pod 

length (r = 0.90**), seeds/pod (r = 0.74**), pods/plant (r = 0.71**) and Seeds/plant (r = 0.86**) had the positive 

correlation coefficients with grain yield. Also, results showed that mycorrhizae species affected grain yield of 

mungbean plants through their effect on pod length, seeds/pod, pods/plant and seeds/plant under well-watered and 

drought stress conditions. 
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Introduction 

Arbuscular mycorrhizal (AM) symbiosis is formed by 

70–90% of land plant species (Smith and Read, 

2008). AM fungi that all members belong to a 

monophyletic phylum, the Glomeromycota 

(Schussler et al., 2001) occur in almost all terrestrial 

ecosystems (Heinemeyer and Fitter, 2004; Martin, 

2008). Inoculation of plant roots with (AM) fungi 

may be effective in improving crop production under 

drought conditions. Colonization of roots by AM 

fungi has been shown to improve productivity of 

numerous crop plants in soils under drought stress 

(Al-Karaki and Al-Raddad, 1997; Al-Karaki and 

Clark, 1998; Faber et al., 1990; Sylvia et al., 1993). 

 

Arbuscular mycorrhizal (AM) symbiosis has been 

shown upon hundreds of occasions to change the 

water relations of host plants (Auge, 2001). Earlier, 

Al-Karaki et al., (2004) showed that plant recovery 

after water-deficit stress occurred faster in 

mycorrhizal plants than nonmycorrhizal ones. 

Stomatal conductance, transpiration rate, and leaf 

water potential are generally enhanced in mycorrhizal 

plants under water-limited conditions (Duan et al., 

1996; Caravaca et al., 2003). In legume crops, 

mycorrhizal fungi were found to increase the 

vegetative growth and seed yield (Lambert and 

Weidensaul, 1991; Mathur and Vyas, 2000). In 

mycorrhizal mungbean plants grain yield, biological 

yield, leaf P, leaf N, protein percentage, protein yield, 

harvest index of protein, and ecosystem water use 

efficiency were improved compared with the non-

mycorrhizal plants. Two species of mycorrhiza, G. 

mosseae and G.intraradices significantly improved 

the yield (grain, protein) and reduced the water-

deficit stress in the field (Habibzadeh et al., 2013). 

 

Arbuscular mycorrhizal (AM) fungi have been 

reported to improve nutrient uptake, particularly 

phosphorus (Abd-Alla et al., 2000). Arbuscular 

mycorrhizal colonization was found to increase 

soluble carbohydrates and chlorophyll in host plants 

which often causes to change the level of host amino 

acids (Auge, 2001), reducing osmotic pressure, or 
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maintaining protein structures in their cells (Bray, 

1997) and enhancement of root hydraulic 

conductivity (Auge, 2004) under drought stress 

conditions.  

 

The main objective of this research was to evaluate 

the effects of mycorrhizal fungi species (Glomus 

mosseae and G. intraradices compared with 

uninoculated plants) on grain and yield components 

of pot-grown mungbean that has been subjected to 

various levels of water-deficit conditions (irrigation 

after 25, 50, 75, and 100 mm of evaporation from a 

Class A pan). 

 

Materials and Methods 

Trial was conducted in agricultural faculty of west 

Azerbaijan province in Iran. The experiment located 

in longitude 37°, 39' north, latitude 44°, 58′ east and 

1365m altitude. Environmental conditions of the 

experimental site, including the highest and lowest 

temperature and humidity, sum of sunny hours, daily 

and monthly solar radiation and potential 

evapotranspiration of the study are shown in Table 1. 

Some physicochemical properties of soil which is 

used in 360 pots were determined (Table 2).  

 

A factorial experiment based on completely 

randomized design carried out with three replications. 

Four irrigation regimes 25, 50, 75 and 100 mm of 

evaporation from a Class A pan and inoculation 

mycorrizal mungbean (Vigna radiata L.) NM92 with 

three levels including Glomus mosseae, G. 

intraradices and non-inoculation as control arranged 

as the first and second factors, respectively.  

Irrigation water needed before irrigation (VN) is the 

amount of water needed during irrigation to replenish 

the soil moisture deficit, thereby restoring the soil to 

field capacity. The value of VN was calculated 

according to Benami and Ofen (1984): 

 

where VN is the irrigation water needed before 

irrigation (m3), FC is field capacity (%), WP is the 

wilting point (%), BD is bulk density (g cm–3), D is 

the root zone depth (m), ASM is the available soil 

moisture before irrigation (a fraction), and A is the 

area of the soil pot(m2).  

 

Each plot consisted of 10 pots which all was 360 

pots. Depth and diameter of pots was 22 cm with 

containing 7kg of soil. Seeds of the mungbean 

cultivar NM92 were provided by the Agricultural 

Research Station of Dezfol. The two species of 

mycorrhizal fungi used in this study were G. mosseae 

and G. intraradices, which were produced on maize 

(Zea mays L.) host plants by Dr. E.M. Goltapeh at 

Tarbiat Modarres University, Tehran, Iran. The 

mycorrhizal inoculum was a mixture of sterile sand, 

mycorrhizal hyphae, spores (20 spores g–1 inoculum), 

and colonized root fragments. Ten grams of the 

appropriate inoculum was placed into the hole below 

each seed, and then covered with soil. For non-

mycorrhizal control plants were sown with no 

inoculation. At first 4 seeds were planted in each pot 

and reduced two plants in the third weeks. At three 

primary leaf stages were applied irrigation regimes. 

Total water consumption during growing season per 

pot was 84, 51, 39 and 27 liters for irrigations of 25, 

50, 75 and 100 mm of evaporation from a Class A 

pan, respectively. Pod length, Seeds/pod, Pods/plant 

and Seeds/plant measured from 10 randomly selected 

plants at the end of the growing season. Grain yield 

recorded from all pots.  

 

At plant maturity, the percentage of colonization of 

mungbean roots by AM fungi was determined on 15 

plants per experimental unit. Root colonization was 

measured in fresh roots cleared in 10% KOH for 10 

min at 90°C and stained in 0.05% lactic acid–

glycerol–Trypan Blue (Phillips and Hayman, 1970). 

The percentage of root colonization by AM fungi was 

microscopically determined using the gridline 

intersection method (Giovannetti and Mosse, 1980).  

 

The leaf relative water  content (RWC) was 

ascertained by measuring  the fresh weight, 

rehydrated weight on  distilled water, and dry weight 

(DW, 70°C for 48 hours) using  the following 

formula (Turner, 1986): 

RWC = (FW – DW)/ (SW- DW) × 100 

 

In which the fresh weight (FW) of leaves was 

determined by immediately weighting  one  fully 

expanded young leaf, which was allowed to rehydrate 

for 4 h by floating 1 cm from the cutting part into a 

covered beaker with distilled water. The  rehydrated 

leaves were weighted (SW) to determine saturate 

mass, and then the leaf was dried at 70 °C for 24 h to 

determine dry weight.   

 

Total soluble carbohydrates were determined based 

on phenol sulfuric acid method (Dubois et al., 1956). 

In this method, 0.5 g of fresh weight of leaves was 

homogenized with ethanol. The extract was filtered 

and then treated with 5% phenol and 98% sulfuric 

acid. This mixture remained for 1 hour and then its 

absorption at 485 nm was measured by 

spectrophotometer. Soluble carbohydrate contents 

were shown as mg g-1 of fresh weight. 

 

Analysis of variance of data was performed using 

MSTATC software.The effects of irrigation, 

application of mycorrhizae, and the interactions of 

these two factors were analyzed by ANOVA and the 

means compared by the Student Neuman Keul test (P 
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≤ 0.05). Also, correlation coefficients were 

calculated. 

 

Results and Discussion 

Different levels of irrigations and mycorrhizae for 

traits of colonization percentage, relative water 

content, pod length, seeds/pod, pods/plant, 

seeds/plant, grain yield and interaction between them 

for Mycorrhizae colonization were significant 

differences (Table 3). 

 

Colonization percentage of G. intraradices was more 

than G. mosseae and less reduced with increasing 

water stress. Variations of this trait were for G. 

intraradices between 29.11 to 53.37 and G. mosseae 

25.83 to 46.29. Colonization mycorrhiza reduced due 

to water stress (Table 4). Pod length, seeds/pod, 

pods/plant and seeds/plant decreased with severity 

stress. Irrigation levels of 25 and 100 mm of 

evaporation from a Class A pan were 8.56cm, 9.08, 

8.31, 76.16 and 7.53cm, 7.24, 4.14, 30.14 values of 

them, respectively. G. intraradices had the seeds/pod 

and seeds/plant with 9.05 and 75.03, respectively 

(Table 5 and 6). It has been suggested that number of 

seed pod-1 was reduced when water stress occurred 

during reproductive stage. More number of seed in a 

pod results in more fertilization and optimum seed 

development. Water stress at flowering induce flower 

abortion and drying of stigma which reduce the 

germination of pollen grain in stigma and reduce 

fertilization capability and ultimately causes less 

number of seeds in a pod and poor seed development 

(Liu et al., 2003). Other report also show that 

generally, severity stress at the flowering stage 

caused increase flower abortion (Kokubun et al., 

2001). Auge (2001) reported that the mycorrhizal 

soybean plants produced less drought-induced pod 

abortion than non-mycorrhizal plants, because of 

increasing photosynthesis, photosynthetic storage and 

export at the same time. 

 

Relative water content was higher in both species G. 

mosseae and G. intraradices (88.08%) than non-

mycorrhizal (80.82%) plants (Table 5). The highest 

(92.25%) and lowest (76.06%) relative water content 

was obtained from plants irrigated after 25 and 100 

mm of evaporation, respectively (Table 6). Hardie, 

(1985) reported that AM fungal hyphae with a 

diameter of 2–5 μm can penetrate soil pores 

inaccessible to root hairs (10–20 μm diameter) and so 

absorb water that is not available to non-mycorrhizal 

plants.  Ruiz-Lozano and Azcon, (1995) in their 

experiment with lettuce plants designed an AM 

hyphal compartment in the root zone using a 50-μm 

nylon screen that allowed penetration by AM hyphae 

but not by roots, water was applied by injection to 

this compartment. They found an increase in plant 

fresh weight of nearly 150% in mycorrhizal as 

compared to the non-mycorrhizal plants. Similarly, 

leaf water content increased in mycorrhizal plants 

with water applied to the hyphal compartment. 

 

The minimum total soluble carbohydrates (52.82 

mg/g FW) was obtained from non-mycorrhizal mung 

bean plants and in both species G. mosseae (72.53 

mg/g FW) and G. intraradices (70.42 mg/g FW) the 

maximum level of total soluble carbohydrates was 

obtained (Table 5). AM symbiosis can increase the 

drought tolerance of plants if the commonly observed 

higher rates of photosynthesis lead to an increased 

accumulation of nonstructural carbohydrates that, 

acting as osmoprotectants, can lower the osmotic 

potential (Auge, 2001; Porcel and Ruiz-Lozano, 

2004; Khalvati et al., 2005). Several studies have 

reported the accumulation of carbohydrates when 

plants are subjected to water stress in both woody 

species such as Citrus (Wu and Xia, 2006) and  

Macadamia cultivars (Yooyongwech et al., 2013) and 

in herbaceous species such as lettuce cultivars 

(Baslam and Goicoechea, 2012) and pistachio 

(Abbaspour et al., 2012).  

 

Both species G. mosseae (4.29g/plant) and G. 

intraradices (4.31g/plant) significantly improved the 

grain yield compared with the non-mycorrhizal 

(2.64g/plant) plants and reduced the water-deficit 

stress in mungbean plants. The highest (5.14g/plant) 

and lowest (5.14g/plant) grain yield were obtained 

from plants irrigated after 25 and 100 mm of 

evaporation, respectively. Grain yield differences in 

mycorrhizal plants with control are related to water 

absorption and mineral nutrients (AL-Karaki et al., 

2004; Demir, 2004; Faisal et al., 2000; Kaya et al., 

2003; Pelletier and Dione, 2004; Robert, 2001; 

Sanches-blanco et al., 2004). 

 

Correlation coefficients of traits showed that 

mycorrhizae colonization with grain yield (r=0.72**), 

relative water content (r=0.55**), total soluble 

carbohydrate (r=0.58**), pod length (r=0.67**), 

seeds/pod (r=0.60**), pods/plant (r=0.70**) and 

seeds/plant (r= 0.70*) were significant differences 

(Table 7). In addition, relative water content (r = 

0.76**), pod length (r = 0.90**), seeds/pod (r = 

0.74**), pods/plant (r = 0.71**) and seeds/plant (r = 

0.86**) had significant differences with grain yield. 

These observations indicate that plants having a 

higher pod length and seeds/plant produce higher 

grain yield. 

Conclusion 
Inoculated plants with G. intraradices and G. 

mosseae showed more relative water content, total 

soluble carbohydrate, pod length, seeds/pod, 

pods/plant and seeds/plant than control. Moreover, 

the extent of growth of G. intraradices and G. 

mosseae mycorrhizal plants positively correlated with 
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the rate of AM root colonization and Mycorrhizal 

symbiosis clearly increased the grain yield. Yield 

components such as pod length, seeds/pod, pods/plant 

and seeds/plant increased in higher irrigation levels 

and consequently will lead to increase grain yield.  
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Table 1. Environmental conditions at the experimental site during summer 2009. 

 2009 

Parameter June  July Aug. Sept. 

Highest temperature, °C 29.1 35.2 32.5 28.6 

Lowest temperature, °C 5.0 10.7 11.1 7.9 

Highest relative humidity, % 79 72 73 83 

Lowest relative humidity, % 33 32 27 38 

Sum of sunny hours, no. 309 357 365 290 

Solar radiation, MJ m–2 d–1 25.2 26.5 25.4 19.9 

Solar radiation, MJ m–2 mo–1 756 821.5 787.4 597.0 

Potential evapotranspiration, mm mo–1 199 235 225 185 

 

 

 

Table 2. Some soil physico-Chemical Characteristics. 

Saturation 

percentage 

Electrical 

conductivity 

pH Organic 

carbon 

Phosphorus Potassium Soil texture 

 (ds m-1)  % mg kg-1 mg kg-1  

48 0.41 7.15 0.74 9.8 324 Silty clay 

 

 

Table 3. Mean squares traits of mungbean affected by mycorrhizal infection under different irrigation regimes. 

S.O.V. df Mycorrhizae 

colonization 

Relative 

water 

content 

 

Total 

soluble  

carbohydrate  

 

Pod 

length 

Seed/pod Pod/plant 

 

Seed/plant Grain 

yield 

Irrigation (I) 3 409.76** 420.63** 89.73 3.42** 5.21** 29.93** 4446.50** 15.57** 

Mycorrhizae 

(M) 

2 5237.52** 21.66** 1404.75** 2.64** 11.78** 24.50** 3607.20** 11.02** 

M × I 6 88.10** 13.94 68.06 0.07 0.19 0.90 287.05 0.35 

Error 24 2.31 26.97 62.16 0.21 0.93 1.59 170.16 0.35 

CV (%) - 5.87 6.06 7.90 5.48 11.69 18.54 20.62 15.78 

 * Significant at the 5% probability level; ns, not significant. 

** Significant at the 1% probability level. 

 

Table 4. comparison of colonization percentage of mungbean affected by irrigation regimes and mycorrhiza species. 

Irrigation 

Regimes+ 

Mycorrhizal 

symbiosis 

Mycorrhizae 

Colonization (%) 

25 Non-mycorrhizal 2.71h 

Glomus mosseae 46.29b 

G. intraradices 53.37a 

50 Non-mycorrhizal 2h 

G. mosseae 39.46d 

G. intraradices 43.49c 

75 Non-mycorrhizal 1.64h 

G. mosseae 29.74f 

G. intraradices 35.69e 

100 Non-mycorrhizal 1.36h 

G. mosseae 25.83f 

G. intraradices 29.11g 

+ after evaporation from a Class A pan. 

 Means followed by the same letter(s) in each column are not significant differences. 
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Table 5. Means comparison of mungbean traits by mycorrhizae species. 

Mycorrhizal 

symbiosis 

Relative 

water 

content 

(%) 

Total soluble  

carbohydrate  

(mg/g FW)  

Pod length 

(cm) 

Seeds/p

od 

Pods/pla

nt 

 

Seeds/plan

t 

Grain 

yield 

Non-mycorrhizal 80.82b 52.82b 7.91b 7.15b 5.14b 43.35b 2.64b 

Glomus mosseae 88.08a 72.53a 8.61a 8.56a 7.69a 71.40a 4.29a 

G. intraradices 88.08a 70.42a 8.80a 9.05a 7.54a 75.03a 4.31a 

Means followed by the same letter(s) in each column are not significant differences. 

 

 

Table 6. means comparison of mungbean traits by irrigation regimes. 

Irrigation 

Regimes+ 

Relative 

water 

content 

(%) 

Total 

soluble  

carbohydrat

e  

(mg/g FW)  

Pod length 

(cm) 

Seeds/po

d 

Pods/plan

t 

 

Seeds/plan

t 

Grain 

yield 

25 92.25a - 8.56a 9.08a 8.31a 76.16a 5.14a 

50 86.96a - 8.82a 8.36a 7.43a 76.04a 4.02b 

75 87.37a - 8.84a 8.33a 7.28a 70.71a 3.84b 

100 76.06b - 7.53b 7.24b 4.14b 30.14b 1.97c 

+ Irrigation after evaporation from a Class A pan 

Means followed by the same letter in each column are not significant differences 

 

 

 

Table 7. Correlation coefficients between mungbean traits. 

 

Treatment 

Mycorrhizae 

colonization 

Relative 

water 

content 

 

Total soluble  

carbohydrate  

 

Pod 

length 

Seeds/pod Pods/plant 

 

Seeds/plant 

Relative water content 

  

0.55**       

Total soluble carbohydrate  

 

0.58** 0.27      

Pod length 0.67** 0.77** 0.27     

Seeds/pod 0.60** 0.69** 0.25 0.78**    

Pods/plant 

 

0.70** 0.55** 0.36* 0.55** 0.54**   

Seeds/plant 0.70** 0.71** 0.26 0.91** 0.84** 0.55**  

Grain yield 0.72** 0.76** 0.20 0.90** 0.74** 0.71** 0.86** 

* and ** Significant at P≤0.05 and P≤0.01, respectively 
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