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Abstract: Geochemical study on the Ilubirin stream sediments was carried out to infer their provenance, maturity, 

classification, enrichment, depletion, tectonic setting and source-area weathering. The sediments can be classified as 

ferromagnesian potassic, quartz arenites that are non-calcareous. The SiO2/Al2O3 index is high, meaning that the 

samples are mature, the Index of Compositional Variability also indicate that the sediments are mineralogically 

mature, while the Al2O3/(CaO+MgO+Na2O+K2O) ratio indicate that there are stable mobile oxides in the sediments. 
The plot of SiO2 versus Al2O3+ K2O+ Na2O shows that the sediments formed under semi-arid/arid conditions tending 

towards increasing chemical maturity. Al2O3 correlates positively with all the major oxides except SiO2, suggesting 

hydraulic fractionation and sorting. The negative linear trend between Al
2
O

3
 and SiO

2 
indicates that the major element 

composition of the stream sediments is controlled largely by the relative amount of quartz and feldspar versus clay 

minerals. The depletion of highly mobile Na. K and Ca elements is due to leaching during the formation of clay 

minerals during increased chemical weathering. The immobile Fe and the less mobile Mg elements were depleted 

while the immobile Ti was enriched; this suggest that they may are from a felsic source. The high TiO2/Fe2O3 ratios 

suggests concentration in the sediments of a heavy mineral phase containing Ti minerals such as ilmenite and rutile. 
The weathering indices (CIA, CIW, PIA and MIA) indicates a high degree of weathering of the source materials. The 

tectonic setting is the passive continental margin, while the provenance is the quartz-rich sediments of mature 

continental provenance, associated with a continental passive margin, intracratonic basins, or recycled orogenic 

provinces. 

 

Keywords: weathering, chemical maturity, provenance, felsic, tectonic setting 

1.0 Introduction 

The geochemical compositions of stream sediments 

reflect the average composition of an entire drainage 

basin (Halamic et al., 2001; Reimann and Melezhik, 

2001). According to (Grunsky and Sutphin, 2009), 

geochemical studies based on the chemical analysis of 

active stream sediments are an effective tool with 

several applications. Several authors have used major 

element discrimination diagrams (Bhatia, 1983) to 
discriminate the tectonic settings of sedimentary 

basins and have been applied in topical publications 

(Kroonenberg, 1994; Zimmermann and Bahlburg, 

2003; Armstrong-Altrin et al., 2004). According to 

(Armstrong-Altrin and Verma, 2005), caution is 

required in their uncritical use. The most important 

clues for the tectonic setting of the basin comes from 

the relative depletion of the most mobile elements like 

Ca and Na and enrichment of Si and Ti—the most 

immobile elements, among others. The oxides of these 

elements are assumed to show enrichment or depletion 

in quartz, K-feldspar, plagioclase feldspars, and micas. 

The ratio of the most immobile elements to the most 

mobile ones increases toward passive margins due to 

the relative tectonic stability (Bhatia, 1983; 
Kroonenberg, 1994; Zimmermann and Bahlburg, 

2003; Armstrong-Altrin et al., 2004; Roser and 

Korsch, 1986) and hence prolonged weathering. This 

can be recorded in sediments as paleoclimate index 

(Chittleborough, 1991; Harnois, 1988; Nesbitt and 

Young, 1982) and high degree of sediment recycling. 

ttp://www.ijsciences.com/pub/issue/2015-04/
ttp://www.ijsciences.com/pub/issue/2015-04/
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Major elements and selected trace and rare earth 

elements and their elemental ratios are sensitive 

indicators of the source rocks, tectonic setting, 

paleoweathering conditions and paleoclimate of the 

clastic sediments (Bhatia, 1983; Bhatia and Crook, 

1986; Roser and Korsch, 1986; Roser and Korsch, 

1988; McLennan and Taylor, 1991; McLennan et al., 

1993; Johnsson and Basu, 1993; Condie, 1993; 

Nesbitt, 1996; Fedo, et al., 1997; Cullers and 

Podkovyrov, 2000; Bhatt and Ghosh, 2001). Ilubinrin 

stream is located in Ondo State South Western 
Nigeria.  

 

The study area lies within the latitudes 60 281N and 60

 371N and longitudes 40 321E and 40 51E of the Green

wich Meridian (Fig 1). The Elevation rangesbetween 

50 and 250 m above the sea   level. This area lies 

between Ekiti State and Edo State respectively. The 

drainage pattern is mainly Dendritic in which there are 

many rivers of different sizes. Dendritic system forms 

in V-shape valleys as a result of the rock types whether 

porous or non-porous. The drainage in the area is 

influenced by: lithological variations, structural 
elements such as faults, joints etc., and 

geomorphology of the area. The most outstanding 

characteristics of the drainage systems over the areas 

of Basement Complex rocks is the proliferation of 

many small rivers, some of which intersect the minor 

roads and footpaths in the area. The area has little 

streams which take their source from hills in the 

northern part. This present research is aimed at 

interpreting the sediment source area weathering, 

provenance, tectonic setting, maturity and 

classification of the Ilubirin stream sediments based on 
major oxides geochemical data. 

 

2.0 Materials and Methods 

Seven stream sediments were collected at Ilubinrin; 

the samples were collected using a hand auger and 

shovel. They were then sieved after drying using 

75µ𝑚 stainless steel mesh wire. Chemical analysis 

was carried at Stellenbosch University, South Africa 

using the Inductively Coupled Plasma–Mass 

spectrophotometry (ICP-MS) technique to determine 

the concentration of rare earth and trace elements in 

the stream sediments.  

3.0 Results and Discussion 
3.1 Geochemical Composition 

Table 1 shows the major oxides component of the 

Ilubirin stream sediments. The samples are dominated 

by SiO2, which ranges from 72.62-94.81% (Average = 

91.7%). The wide range of SiO2 content may be due to 

effect of hydraulic sorting and slow deposition. Al2O3 

ranges from 1.52-5.15% (Average = 2.11%), Fe2O3 

(Average = 1.84%) MgO (Average = 0.08%); K2O 

(Average = 0.37%), TiO2 (Average = 1.66%), Na2O 

(Average = 0.06%), MnO (Average = 0.05) and CaO 
(Average = 0.08%); this low values may be attributed 

to chemical destruction under oxidizing conditions 

during weathering or source-area composition. Lack 

of Na2O in the sediments could be attributed to 

paucity of plagioclase feldspar in the host rock or their 

loss during weathering. 

 

Figure 2 shows Al2O3 correlates positively with all the 

major oxides except SiO2, suggesting hydraulic 

fractionation and sorting. The negative linear trend 

between Al
2
O

3
 and SiO

2 
indicates that the major 

element composition of the stream sediments is 

controlled largely by the relative amount of quartz and 

feldspar versus clay minerals. The positive correlation 

between Al
2
O

3 
with Fe

2
O

3
, MgO and TiO

2
 suggests 

that they occur in clay minerals formed from 

weathering of ferromagnesian minerals. The positive 

linear correlation between Al
2
O

3 
and K

2
O suggests 

that potassium is associated illitic clays. Also, Al
2
O

3 

correlates positively with P
2
O

5 
which may be due to 

association of phosphorus with clays rather than 

apatite.
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Table 1. Major oxides component (Wt %) of the Ilubirin Stream sediments: some ratios and weathering indices   

Oxides (Wt. %) ILUB-1 ILUB-2 ILUB-3 ILUB-4 ILUB-5 ILUB-6 ILUB-7 

SiO2  94.06 94.63 93.86 94.7 94.21 94.74 94.81 

Al2O3  1.52 1.78 1.81 1.7 1.65 1.57 1.67 

Fe2O3  0.87 1.1 0.96 0.83 0.73 0.59 0.94 

MnO  0.02 0.02 0.02 0.01 0.01 0.01 0.01 

MgO  0.06 0.07 0.06 0.07 0.06 0.06 0.07 

K2O  0.03 0.06 0.06 0.06 0.05 0.06 0.05 

CaO  0.03 0.04 0.03 0.03 0.03 0.04 0.03 

Na2O  0 0 0 0 0 0 0.01 

TIO2 0.84 0.79 1.14 0.69 0.71 0.58 0.63 

P2O5  0.04 0.05 0.05 0.04 0.04 0.04 0.04 

SiO2/Al2O3  61.88 53.16 51.86 55.71 57.10 60.34 56.77 

K2O/Al2O3  0.02 0.03 0.03 0.04 0.03 0.04 0.03 

CaO/MgO  0.50 0.57 0.50 0.43 0.50 0.67 0.43 

K2O/Na2O  0 0 0 0 0 0 5.00 

Na2O/K2O  0.00 0.00 0.00 0.00 0.00 0.00 0.20 

Log(K2O/Na2O) 0 0 0 0 0 0 0.70 

Log 

((Fe2O3+MgO)/(Na2O+K2O)

) 

1.49 1.29 1.23 1.18 1.20 1.03 1.23 

Fe2O3/K2O 29.00 18.33 16.00 13.83 14.60 9.83 18.80 

Log SiO2/Al2O3  
1.79 1.73 1.71 1.75 1.76 1.78 1.75 

Log(Fe2O3/K2O) 1.46 1.26 1.20 1.14 1.16 0.99 1.27 

PIA 98.03 97.73 98.31 98.2 98.16 97.42 97.59 

CIA 96.2 94.68 95.26 94.97 95.38 94.01 94.89 

CIW 98.06 97.8 98.37 98.27 98.21 97.52 97.66 

MIA 92.41 89.36 90.53 89.94 90.75 88.02 89.77 
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Fig 1. The study area and sample points 

 

3.2 Geochemical classification 

The classification schemes used in this study was 

adopted from the geochemical classification diagrams 

of several authors (Pettijohn et al., 1972; Blatt et al., 

1972; Herron, 1988; Lindsey, 1999). The ternary 

diagram proposed by Blatt et al. (1972) shows the 

stream sediments are ferromagnesian potassic 

sandstones (Fig. 3). This ternary diagram omitted 

sandstones with less than 5% of Al2O3, consequently, 

quartz arenites is missing. 
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Fig. 2. Cross-plots of major oxides against Al2O3 showing the correlations. 

 

Based on the work by Lindsey (1999) using data from 

Pettijohn (1963 and 1975), the average lithic arenites 
plotted in the ferromagnesian potassic sandstones 

field, but the average greywacke plotted in the sodic 

sandstone field and average arkoses appeared in the 

potassic sandstones field. Figure 4 shows a plot in the 

quartzarenite zone, lack of more plots is due to paucity 

of Na2O in the samples. 

 

According to Pettijohn (1963), the lithic arenites are a 

diverse and poorly defined class. In addition to 

abundant rock fragments of widely varying 

composition, many lithic arenites contain clay matrix 
with different compositions which can contain higher 

levels of Fe and Mg. Also, many rock fragments of 

lithic sandstones are composed of materials that vary 

greatly in composition. Based on compositional fields 

for major classes of sandstones (Lindsey, 1999), the 

studied sediments plotted in the lithic arenite field 

(Fig. 5). 
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Figure 3. Ternary diagram of Na2O-K2O-(Fe2O3+MgO) of the stream sediments, from Blatt et al., 1972. 

 

 

 
 

Figure 4. Chemical classification of the stream sediments based on Pettijohn scheme (1972). 
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Figure 5. Compositional fields for major classes of sandstones (data from Pettijohn, 1963; 1975): Log 

(Fe2O3+MgO)/(Na2O+K2O) versus log (K2O/Na2O), adapted from Lindsey, 1999). 

Figure 6 shows the samples plotting in the Fe-sand 

zone. According to Farquhar et al. (2014), the third 

axis from the Herron (1988) scheme (not shown in Fig. 

6), classifies samples by Ca content by dividing 

samples into non-calcareous (Ca < 4 %), calcareous (4 

% < Ca < 15 %), and carbonate (Ca > 15 %) samples. 

The stream sediments classified as non-calcareous.

 

 
 

Figure 6. Chemical classification of the stream sediments based on log (SiO2/Al2O3) vs. log (Fe2O3/K2O) diagram of 

Herron (1988). 

 

Based on the study of a reference set, Lindsey (1999) 

proposed the following guidelines for chemical 

classification of sandstones: 

1) quartz arenite: log (SiO2/Al2O3  

2) graywacke: log (SiO2/Al2O3) < 1 and log 

(K2O/Na2O) < 0 

3) arkose (includes subarkose): log (SiO2/Al2O3) < 1.5 

and log (K2O/Na2

((Fe2O3+MgO)/(K2O+Na2O)) < 0 

4) lithic arenite (subgraywacke, includes 

protoquartzite): log (SiO2/Al2O3) < 1.5 and either log 

(K2O/Na20) < 0 or log ((Fe2O3+MgO)/(K2O+Na2O))  

2O/Na2O) < 0, lithic arenite can be 
confused with graywacke.  
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The stream sediments falls within the requirements of 

the first condition and thus classifies as a quartz 

arenite. 

 

3.3 Maturity 

Figure 7 indicates that the stream sediments formed 

under semi-arid/arid conditions tending towards 

increasing chemically maturity. The high values given 

from the ratio of SiO2/Al2O3 indicate that all the 

samples have low degree of clayness. The higher the 

SiO2 content the lower the degree of clayness. Potter 
(1978) stated that maturity of sandstones is reflected 

by the SiO2/Al2O3 index. High ratios indicate 

mineralogically mature (quartzose, rounded) samples, 

while low ratios represents chemically immature 

samples. The SiO2/Al2O3 ratio for the Ilubirin stream 

sediments range between 51.86 and 61.88, which is 

high; this shows that the samples are mature. The 

Na2O/K2O and Fe2O3/K2O ratios can also be used in 

determining chemical maturity and mineral stability, 

respectively (Pettijohn et al., 1987; Herron, 1988). The 

paucity of Na2O in the samples disallowed the use of 

the Na2O/K2O ratio. By extrapolation, samples with a 
low SiO2/Al2O3 ratio and a higher Fe2O3/K2O ratio 

should be mineralogically less stable and more prone 

to reactivity during supercritical CO2 exposure 

(Farquhar et al., 2014). The samples studied have a 

much higher SiO2/Al2O3 ratio and low Fe2O3/K2O 

ratio, thus, they are mineralogically more stable and 

less prone to reactivity during supercritical CO2 

exposure. The Al2O3/(CaO+MgO+Na2O+K2O) ratio 

can be used in determining the stability of mobile 

oxides as proposed by Gill and Yemane (1996). From 

the positive values obtained (9.8 to 12.7), it shows that 

there are stable mobile oxides in the stream sediments.  
 

An approach towards assessing detrital mineralogy is 

to use the Index of Compositional Variability (Cox et 

al., 1995). The Index of Compositional Variability 

(ICV) is defined as: 

(Fe2O3+Na2O+CaO+MgO+TiO2)/Al2O3. More 

matured sandstone with mostly clay minerals displays 

lower ICV values that are less than 1.0 and such 

sandstones are derived from cratonic environment 

(Cox et al., 1995). The results of the Index of 

Compositional Variability range between 0.81 and 

1.21 with an average of 1.03, this indicate that the 
sands are mineralogically mature.

 

 

 
Figure 7. Chemical maturity of the Ilubirin stream sediment expressed by bivariate plot of SiO2 versus Al2O3+ K2O+ 

Na2O (After Suttner & Dutta, 1986).  

3.4 Source-area weathering 

According to Nesbitt and Young (1982), the 

evaluation of the degree of chemical weathering of the 

sediments’ source rocks can be determined by 

calculating the Chemical Index of Alteration (CIA), 

where CIA = molar 

(Al2O3/[Al2O3+CaO+Na2O+K2O]).This index works 
correctly when Ca, Na, and K decrease as the intensity 

of weathering increases (Duzgoren-Aydin et al., 

2002). The Chemical Index of Weathering (CIW) 

proposed by Harnois, (1988) is similar to the CIA 

except for the exclusion of K2O in the equation: CIW 

= molar (Al2O3/(Al2O3+ CaO + Na2O)). The CIA and 

CIW are interpreted in similar way with value of 50 

for unweathered upper continental crust and roughly 

100 for highly weathered materials, with complete 

removal of alkali and alkaline-earth elements 

(McLennan et al., 1983; McLennan, 1993; Mongelli et 
al., 1996). Low CIA values (i.e. 50 or less) also might 

reflect cool and / or arid conditions (Fedo et al., 1995). 

The intensity of the chemical weathering can also be 

estimated using the Plagioclase Index of Alteration 
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(Fedo et al., 1995); in molecular proportions: PIA = 

[(Al2O3-K2O)/ (Al2O3 + CaO* + Na2O-K2O)] × 100 

where CaO* is the CaO residing only in the silicate 

fraction. Unweathered plagioclase has PIA value of 50 

while Phanerozoic shales have PIA value of 79.  

 

The CIA values for the samples ranged between 94 

and 96%, while CIW ranged from 97-98% indicating 

a high degree of weathering of the source materials. 

The PIA values ranged from 97-98%, this also 

indicates high degree of weathering. 
 

Voicu et al. (1997) also proposed the Mineralogical 

Index of Alteration (MIA) as a weathering parameter 

calculated as: MIA = 2*(CIA-50). MIA values 

between 0 and 20% are designated as incipient, i.e. just 

starting; 20-40% (weak); 40-60% (moderate) and 60-

100% as intense to extreme degree of weathering. The 

extreme value of 100% indicates complete weathering 

of a primary material into its equivalent weathered 

product (Voicu and Bardoux, 2002). MIA values for 

the samples ranged between 88 and 92%, which 

intense weathering of the source material, this is in 

agreement with the CIA, CIW PIA. 

 

Figure 8 shows that all the samples plotted at the A end 

member, which suggests intense chemical weathering 

and transportation of the sediments. The chemical 

composition of weathering products in a river basin is 

expected to exhibit entrenched concepts on mobility of 

various elements during weathering (Nesbitt et al., 
1980; Singh et al., 2005), and therefore to assess the 

state of chemical and physical weathering (Vital and 

Stattegger, 2000; Singh et al., 2005; Liu et al., 2007). 

Elemental ratios calculated with respect to Al are used 

to identify and evaluate the major element mobility. 

According to Singh et al. (2005), the ratio of the 

content of element X and Al2O3 in rivers divided by 

the ratio of the same element content of upper 

continental crust (UCC) gives the elemental ratio.

 
Fig. 8. Ternary diagram showing the weathering trend of the stream sediments (all in molar proportions); Al2O3–

CaO +Na2O−K2O (A–CN–K). Fields from Gu et al. (2002). 
 

The elemental ratio refers to the relative enrichment or 

depletion of the element, i.e., >1 indicates enrichment, 

<1 indicates depletion, and =1 indicates no change in 

the relative abundance of the element. The stream 

sediments have, CaO, K2O, Na2O, Fe2O3, MgO values 

less than 1, while SiO2, and TiO2 have values greater 

than 1. The depletion of highly mobile Na. K and Ca 

elements is due to leaching during the formation of 

clay minerals during increased chemical weathering. 

The immobile Fe and the less mobile Mg elements 

were depleted while the immobile Ti was enriched; 

this suggest that they may are from a felsic source.  

 

Titanium is relatively immobile compared to other 

elements during sedimentary processes, and hence is a 

good indicator of source rock composition (McLennan 

et al., 1993). There is a positive correlation between Ti 

and Fe (fig. 9); according to Singh, (2009), Fe2O3 and 

http://www.ijsciences.com/
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TiO2 in stream sediments can be expected to be 

correlate positively due to sorting effects. Linear 

arrays of data points along lines extending toward the 

origin in binary Fe2O3–TiO2 plots demonstrate that the 

elements were immobile, and that they were also 

hydraulically fractionated in a similar manner (Young, 

et al., 2013). The Ilubirin stream sediments have 

TiO2/Fe2O3 ratio between 0.67 and 1.19, which 

suggests concentration in the sediments of a heavy 

mineral phase containing Ti minerals such as, ilmenite 

and rutile. 

 

 
Fig. 9. Positive correlation of Fe2O3–TiO2 plots for the stream sediments  

 

3.5 Provenance and tectonic settings 

Several authors (Blatt et al., 1980; Bhatia, 1983; 

Bhatia and Crook, 1986; Roser and Korsch, 1986 & 

1988) have related sandstone geochemistry to specific 

tectonic environment. The discriminant function plot 

of Roser and Korsch (1988) defined four (4) main 
provenances: mafic igneous provenance; intermediate 

igneous provenance; felsic igneous provenance; and 

quartzose sedimentary provenance (Fig. 10). The 

stream sediments samples plot in the field P4, quartz-

rich sediments of mature continental provenance, 

associated with a continental passive margin, 

intracratonic basins, or recycled orogenic provinces. 

Roser and Korsch (1986) created a tectonic 

discrimination diagram using K2O/Na2O ratio versus 

SiO2 (Fig.11) to determine the tectonic setting of 

clastic terrigenous sedimentary rocks. The cross plot 

is used to discriminate between sediments deposited in 

the Passive Continental Margin (PM), Active 

Continental Margin (ACM) and the Oceanic Island 
Arc (OIA). A sample plot in the Passive Margin, lack 

of more plots is due to the paucity of Na2O. Figure 12 

is another tectonic diagram by Maynard et al., (1982), 

which also shows the plots in the Passive Margin field, 

though also affected by the paucity of Na2O. Figures 

13 and 14 are also tectonic discrimination diagrams of 

the Ilubirin stream sediments indicating the Passive 

Margin zone. 

 

 

 
 

Fig. 10. Discriminant function diagram using major elements for the provenance signatures of the stream sediments 

(After Roser & Korsch, 1988). 
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Fig. 11. Tectonic discrimination plot for the stream sediments (After Roser and Korsch, 1986). 

 

 
Figure 12. K2O/Na2O versus SiO2/Al2O3 ratio – ratio diagram of the stream sediments, after Maynard et al; (1982). 

A1= arc setting and andesitic detritus; A2= evolved arc setting, felsic pluton detritus ACM= Active Continental 

Margin; PM= Passive Margin. 
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Fig. 13. Tectonic setting discrimination Plot of Al2O3/SiO2 versus Fe2O3 + MgO of the stream sediments. Dashed 

lines denote the major fields representing various tectonic settings (after Bhatia 1983). 
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Figure 14. Plot of the major element composition of the stream sediments on the tectonic setting discrimination 

diagram of Kroonenberg (1994). A: Oceanic island Arc, B: continental island Arc, C: active continental margin, D: 

passive margin. 

4. Conclusions 

The sediments can be classified as ferromagnesian 

potassic, quartz arenites that are non-calcareous. The 

sediments formed under semi-arid/arid conditions 

tending towards increasing chemical maturity. The 

SiO2/Al2O3 index is high, meaning that the samples are 

mature and there are stable mobile oxides in the 

sediments. The Index of Compositional Variability 

values indicate that the sediments are mineralogically 

mature. The weathering indices indicates a high 

degree of weathering of the source materials. The 

depletion of highly mobile Na. K and Ca elements is 

due to leaching during the formation of clay minerals 

during increased chemical weathering. The immobile 

Fe and the less mobile Mg elements were depleted 

while the immobile Ti was enriched; this suggest that 

they may are from a felsic source.  The Ilubirin stream 

sediments TiO2/Fe2O3 ratios suggests concentration in 

the sediments of a heavy mineral phase containing Ti 

minerals such as, ilmenite and rutile. There is a 

A= Oceanic Island Arc 

B= Continental Island Arc 

C= Active Continental Margins 

D= Passive Margins 
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positive correlation between Ti and Fe due to sorting 

effects and hydraulic fractionation. The tectonic 

setting is the passive continental margin, while the 

provenance is the quartz-rich sediments of mature 

continental provenance, associated with a continental 

passive margin, intracratonic basins, or recycled 

orogenic provinces. 
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