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Abstract: The amygdala complex is strongly involved in the formation of emotional memories, and GHS-R1a was 

found to be highly expressed in the lateral amygdala versus the central nucleus. Our previous study showed that 

micro-injection of ghrelin, the natural ligand of GHS-R1a, into lateral amygdala impairs memory in mice. 

Consistently, GHS-R1a KO mice shows enhanced memory. To explore the cellular mechanism mediating the effect 

of GHS-R1a signaling on emotional memory, we recorded spontaneous IPSCs and EPSCs in GHS-R1a KO and WT 

BL6 control mice. We found that GHS-R1a KO mice exhibited higher amplitude of IPSCs compared to that of 

control mice, while the EPSC We found that GHS-R1a KO mice exhibited higher frequency compared to that of 

control mice. 
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Introduction 

In 1999, Japanese scientists Kojima et al first endocrine 

cells from mice and human stomach and hypothalamic 

arcuate nucleus that he found a contains 28 amino acid 

polypeptide Ghrelin, and it has a strong effect on 

promoting growth hormone secretion[1-4]. Ghrelin can 

activate the type 1 a  that can promote the release of 

growth hormone receptor (growth hormone 

secretagogue receptor 1 a, GHS - R1a) and ghrelin 

exist two forms in the body by acetylation and 

acetylated[5]. Acetylation of ghrelin is GHS - R1a 

endogenous ligand, and it is our major research. Instead 

of acetylated ghrelin levels in the blood plasma, though 

very high, but its receptors and the role is unclear. 

Ghrelin secretion from the stomach, the peripheral 

circulation to the central nervous system, can cross the 

blood brain barrier to various brain regions[6]. Ghrelin 

through the hypothalamus in the energy balance, sugar 

metabolism, plays a significant role in promoting 

diet[3,7]. GHS - R1a is a kind of typical G protein 

coupled receptors, made up of seven transmembrane 

regions[8]. So far, the GHS - R1a is the only found a 

functional ghrelin receptor subtypes[9]. Within the 

central nervous system, GHS - R1a has abundantly 

expressed in the hypothalamus, participate in our 

known to promote growth hormone release, adjust the 

physiological function such as body weight and 

metabolism[10,11]. Then, according to a study of the 

GHS - R1a has higher expression outside the 

hypothalamus multiple regions, including cortex, 

hippocampus, amygdala, thalamic ventral tegmental 

area and substantia nigra compacta, such as tip GHS - 

R1a ghrelin and its receptors on a variety of advanced 

features may have important role in regulating 

brain.[12,13]. However, GHS-R1a is also expressed in 

extrahypothalamic structures such as amygdala, 

suggesting possible involvement of the emotional 

learning and memory. 
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Materials and Methods 

Slice preparation 

Mice were sacrificed and then decapitated, the brain 

rapidly removed to ice-cold cutting solution containing 

2.5 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 7 

mM MgSO4, 1 mM CaCl2, 30 mM Glucose, 119 mM 

choline chloride, 3 mM sodium pyruvate, 1 mM 

kynurenic acid, 1.3 mM sodium L-ascorbate; aerated 

with 95%O2/5%CO2; pH adjusted to 7.20~7.40. 

Coronal slices of 400 μm were cut on a vibratome 

(VT-1000, Leica, Germany) and transferred to ACSF 

containing 85 mM NaCl, 2.5 mM KCl , 1.25 mM 

NaH2PO4, 0.5 mM CaCl2, 4 mM MgCl2, 24 mM 

NaHCO3, 25 mM glucose, 50 mM sucrose for at least 

1 h prior to experimentation at room temperature 

(25℃). 

 

Whole-cell patch-clamp recording  

Whole cell patch-clamp recordings in voltage-clamp 

mode were obtained from amygdala. The glass 

micropipettes (electrode impedance 4-6MΩ) filed with 

a solution containing 130 mM CsMeSO4, 10 mM CsCl, 

4 mM NaCl, 1 mM MgCl2, 5 mM MgATP, 5 mM 

EGTA, 10 mM HEPES, 0.5 mM Na3GTP, 10 mM 

phosphocreatine, 4mM QX-314, pH adjusted to 

7.25~7.30 with CsOH, osmolarity 280~290 mOsm/l. 

During electrophysiological recordings, slices were 

continuously perfused in ACSF (artificial cerebrospinal 

fluid, containing 120 mM NaCl, 3.5 mM KCl, 2.5 mM 

CaCl2, 1.3 mM MgSO4, 1.25 mM NaH2PO4, 26 mM 

NaHCO3, 10 mM glucose at a flow rate of ~2ml/min at 

room temperature.  

 

For recording sIPSC, sontaneous synaptic currents 

were recording in voltage clamp at a holding potential 

of +20 mV in ASCF composed of the following 3 mM 

kynuric acid. For recording sEPSC, sontaneous 

synaptic currents were recording in votage clamp at a 

hoding potential of -70 mV in ASCF composed of the 

following: 50 μM AP-5 and 50 μM picrotoxin.. 

 

Off-line data analysis  

sEPSCs and sIPSCs were analyzed using Mini Analysis 

Program. Statistical analyses for all data were 

performed with Graphpad Prism. Spontaneous EPSCs 

and IPSCs were analyzed offline using the automatic 

detection protocol within MiniAnalysis program and 

subsequently checked manually for accuracy. Event 

counts were carried out by an experimenter blind to 

genotype. Event kinetics were analysed using 

MiniAnalysis software. Events with amplitudes 

between 10 and 50 pA (EPSCs) and 15 and 70 pA 

(IPSCs) were aligned by half-rise time and normalized 

by peak amplitude. Events displaying complex peaks 

were excluded from this analysis. Values in the Figures 

are presented as mean ± S.E.M. Numerical values for 

the estimated parameters and sample sizes are indicated 

within the Figures. Differences between group means 

were assessed with appropriate unpaired Student’s t 

tests. 

 

Results 

Lateral amygdala neurons of GHS-R1a KO mice 

showed similar sIPSCs and sEPSCs compared to WT 

controls. But there are trends that GHS-R1a KO mice 

exhibited higher amplitude of IPSCs compared to that 

of control mice, and the EPSC We found that GHS-R1a 

KO mice exhibited higher frequency compared to that 

of control mice. 
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Fig.1 Spontaneous postsynaptic currents (PSCs) recorded by whole-cell patch-clamp in amygdala slices in 

GHS-R1a and control mice.  

(A) sIPSC recorded in amygdala cells. Top, sample 

sIPSC traces recorded in GHS-R1a KO and WT  cells. 

Bottom, summary of sIPSC frequency (left) and 

amplitude (right) showing rising sIPSC  amplitude in 
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GHS-R1a KO cells compared to the WT controls.  

n=5 for WT group and n=6 for GHS-R1a KO group. (B) 

sEPSC recorded in amygdala cells. Top, sample sEPSC 

traces recorded in GHS-R1a KO and WT cells. Bottom, 

summary of sEPSC frequency (left) and amplitude 

(right) showing rising sEPSC frequency in GHS-R1a 

KO cells compared to the WT controls. n=5 for WT 

group and n=5 for GHS-R1a KO group. 

 

Discussion 

Our data shows that ghrelin/GHS-R1a signaling 

modulates emotional learning and memory. The 

imbalance between inhibitory and excitatory synaptic 

transmission may cause increased excitatory input in 

lateral amygdala and thus contribute to memory 

improvement observed in GHS-R1a KO mice. 
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