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Introduction 
One of the intriguing problems that the theoretical 
physics is facing is the integration of the general 
relativity with the quantum mechanics. The Einstein 
gravitation has a fully classical ambit, the quantum 
mechanics mainly concerns  the small atomic or sub-
atomic scale, and  the fundamental interactions.  
 
Many are the unexplained aspects of the matter on 
cosmological scale [1]. Even if the general relativity 
has opened some understanding about the 
cosmological dynamics [2-4] the complete 
explanation of generation of matter  and its 
distribution in the universe needs the integration of 
the cosmological physics with the quantum one.  To 
this end the quantum gravity (QG) represents the goal 
of the theoretical research [5-11]. Nevertheless, 
difficulties arise when one attempts to apply, to the 
force of gravity, the standard recepy of quantum field 
theories  [12-13].  
 
Recently, the author has shown that by using the 
quantum hydrodynamic formalism is possible to 
achieve a non contradictory coupling of quantum 
equations with the gravitational one via the derivation 
of the impulse energy tensor [14]. The result can be 
easily translated into the standard quantum formalism 
giving rise to equations that are independent by the 
hydrodynamic approach and that have clear meaning 
and appear well defined [14]. 
 
A first outcome of the model shows that quantum 
effects play an important role on the gravitational 

kinetics of mass density at the Planck scale such as 
forbidding the formation of a black hole with a mass 
smaller than that one of the Planck [14].  
 
Another measurable output of the theory is the 
detailed description of the gravitational field of 
antimatter. Many and discordant are the hypotheses 
on the gravitational features of the antimatter [15-19]. 
The hydrodynamic model shows that the Ricci tensor 
associated to an antimatter distribution has a negative 
sign respect to that one of the same distribution of 
matter. This fact is due to the negative value of the 
energy function for the antimatter states [20]. This 
fact is of paramount importance in making the CPT 
symmetry compatible with the matter-antimatter 
repulsive behavior [20].   
 
The objective of this work is to generalize the 
quantum gravitational equations (QGEs)[14] to 
charged particles with half spin and to show that the 
CPT symmetry of euclidean quantum mechanics is 
the particular case of a more general one that 
comprehends the inversion of the curvature of space-
time. 
The work is carried out by utilizing the 
hydrodynamic representation of quantum mechanics 
where the problem is solved as a function of two real 

variables, ||  and S , that lead to the standard 

complex wave function ]
iS

exp[||


   [21-25]. 

The paper is organized as follows: in the first section 
the hydrodynamic QGEs are briefly resumed. Then 
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they are generalized to half spin charged particles. 
Finally, the CPT symmetry is analyzed respect to the 
QGEs. 

 
2. The Impulse-Energy Tensor of Quantum States 
Derived Via the Hydrodynamic Quantum 
Equations 

In this section we will use the euclidean hydrodynamic 

representation [21] of Klein-Gordon equation (KGE) to 

derive the mixed energy-impulse tensor density.  

The hydrodynamic form of  the Klein-Gordon equation 
(for scalar uncharged particles)
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coupled to the current conservation one [21] 
 

02 































q

J
m

q

S
||

q
       (2.b) 

 
where 

]
*

ln[
i

S




2


          (3) 

and where 

  )
q

*

q
*(

m

i
J,cJ i 

















2


      (4) 

is the 4-current. Moreover, being  the 4-impulse in the hydrodynamic analogy 
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it follows that the 4-current reads 
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Moreover, by using (5), equation (2.a) leads to  
 

2
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quVS S E
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qq c mc
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     (8)   

where ii ppp 2
 is the modulus of the spatial momentum. Generally speaking, the hydrodynamic function 

( t )E E , but for eigenstates, for which it holds nE E const   , it follows that 
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from where it follows that (see appendix A) 
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(where the minus sign stands for antiparticles)  where the quantum potential reads 
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and , by using (9), that 
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Thence, the Lagrangian form of the quantum hydrodynamic equation of motion (2.a) reads [14] 
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where  
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that, for eigenstates, reads  

2

2
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quVmc
L ( )

mc
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 (14.b) 

 
where the minus accounts for antiparticles.  

The motion equation can be obtained by deriving )q,q(
p


 from (13.a) and then inserting it into (13.b). In the 

quantum case, the equation of motion is also coupled, through quV , to the mass distribution ||  of the 

conservation equation (2.b).  

For 0  it follows that 0quV and the classical equations of motion are recovered. 

Thence, the quantum hydrodynamic motion equation for eigenstates (omitting the subscript n) reads 
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that  leads to 
 

 






 

qcmc

V

q
mc

mc

V

ds

d
mcu

ds

du

mc

V
mc

quququ








































T
222

111 (17)  

where, for eigenstates, the quantum energy-impulse tensor (QEIT) 


T  reads[14] 
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leading to the quantum impulse energy tensor density (QIETD) [14] 
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where L|| 2L  is the (quantum hydrodynamic) Lagrangian density and L is the quantum hydrodynamic 

Lagrangian function.. 
 
It must be noted that the hydrodynamic solutions 
given by (17) represent an ensemble wider than the 

quantum one since not all the field solutions p  

warrant the existence of the integral action function 

S  so that the irrotational condition has to be 
imposed  (see references [14,22]).  
 
Equation (17) (following the method described in ref. 
[14] ) can be used to find the eigenstates of matter 

wave n
 (by considering the upper positive sign in 

(18)) and the antimatter eigenstates n
  by using 

the lower minus sign in (18). Furthermore, being the 
eigenstates irrotational (see example in appendix B) 
and  hence, all their linear superpositions, the 

solution of equation (17) allows to solve the quantum 
problem. 
 
Since for a generic matter-antimatter superposition of 
states the energy is neither positive nor negative 
definite, the Lagrangian function as well as the 
QEITD must be re-write in a more general form. To 
this end we observe that by using (8) it follows that 
(see (A.6) in appendix A) 
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and that 
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2.1 Non-Euclidean Generalization 
Since any mass distribution leads to a non-flat space, equation (2.b, 15, 22) must be expressed in a non- euclidean 
space and read, respectively, 
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euclidean ones and where g  is the metric tensor defined by the quantum gravitational equation [14]  
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where the constant  , that warrants the principle of minimum action and the correct Einstein classical limit [14], 
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where, for scalar uncharged particles (see appendix A) 
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As shown by Bialiniki-Birula et al. and by the author himself [14,22], it is noteworthy to observe that, due to the 
biunique relation between the quantum hydrodynamic equations (2.a-2.b) and the quantum equation (1), equations 
(23-24) are equivalent to the Klein-Gordon one   
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(where the semicolon stands for the 4-D covariant derivative) that through the QEITD (25) couples to the quantum 
gravity equation (1) independently by the hydrodynamic approach .  
 
 
2.2 The Overall Cosmological Constant and the Classical Limit 
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If we re-write the QEITD as 
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general relativity without the cosmological term that is canceled by an opposite contribution of quantum origin.  
 
3. Gravitational Quantum Equations for Scalar Charged Particles 
When we consider charged particles, we have to consider the electromagnetic (EM) interaction. This can be done by 

introducing in the quantum gravitational equation (1) the energy-impulse tensor for the EM field f
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coupled with the Klein-Gordon equation  
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coupled to (36) through the energy-impulse tensor density f
T
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    AAAAF ;;  ,      (39) 

 
and where  
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(A i- 
           (40) 

 
is the potential 4-vector,  
 
 
3.1 The Qeitd for Scalar Charged Particles 
As done in section 2, we derive the mixed QEITD from which we can obtain the covariant one. The euclidean 
quantum  hydrodynamic equations of motion for charged particles (from which the mixed QEITD can be derived) 
corresponding to the KGE 
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can be obtained by applying  the minimal coupling correspondence  
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(where  is the mechanical momentum) to the equations (2.a) so that the H-J hydrodynamic equation  reads [21] 
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united to the conservation equation 
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where the 4-current J  reads 
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Moreover, analogously to (8,12), from (44) it follows that 
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and by (A.5) (see appendix A), that 
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that leads to 
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that, as a function of   and A , reads 
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from which, by using  (19,50) with the help of (16,48), it follows that 
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 (53) 

 
Moreover, by using (3,43) we can express the QEITD as a function of the wave function as 
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 (54) 

 
 
4.  Half Spin Charged Particles  
For half spin charged particles, the QGEs are given by the gravitational one (36) coupled both to the Maxwell 

equation (38) (through the EM energy impulse density tensor f
T ) where[22] 
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where ),( i 
0 are the 4-D extended Pauli matrices [22], where 
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(through the energy impulse density tensor (to be defined)) m f m f
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4.1 The Quantum Energy Impulse Density Tensor and the Cosmological Constant for 
Half Spin Particles  

As shown by Bialiniki et al. [22] the components   and   of the bispinor 












 in  the 

Dirac equation (56), that in the Schrödinger-like form reads 
 



































 









emceA

i
ci i

t
200 

  ,    (60)  

   
are not independent given that 
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Thence, as shown by Guvenis [21], by (56 or 60) for the spinor   it holds the equation 
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where AB  and where it has been used the Lorentz gauge 0  A . By using the standard hydrodynamic 

notation  [22] we can express the spinors   as 
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and where  and   are the angles in spherical coordinates of the spin versor  
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where, in agreement with the result in ref.[22] 
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is still conserved, since 
 

  0 *BB* iiii  ,        (69) 

 
and leads to the conservation equation, 
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that by the hydrodynamic identity (43) leads to 
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By equating the real and imaginary part of equation (60), the conservation equation (71) is obtained together with  
the quantum hydrodynamic Hamilton-Jacobi motion equation [21] 
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where the quantum potential  
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contains the contribution from the spin distributions 1 2,  , where the hydrodynamic spin vector i reads 
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and where the “mechanical moment” (see (A.5) in appendix A) reads 
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Moreover, by using (68,73), it follows that  
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that summing over the index j=1,2 leads to 
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that gives (for matter or antimatter eigenstates (see appendix A)) 
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from which by using (5), and the identity 
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the QEITD, as a function of the wave function, reads 
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   (84) 

 
Finally, by using (81), the CC reads 
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that for classical matter or antimatter states reads 
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where the lower minus refers to antimatter. 
 
 
5. Symmetry Of The Half Spin Charged Particles QGE  
The symmetry characteristic of the QGEs (36,59, 84-85) can be straightforwardly derived by observing that the 
Dirac equation (56) is invariant under the CPT transformation. In fact, the charge, time and parity inversion 
transformations lead to the substitutions 
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and hence to 
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that, being equal to the Dirac equation for the complex conjugated wave function, leads to 
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from where we can see that the CPT leads a particle in its antiparticle and vice versa.  
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Moreover, by using the time-inversion  identity 
 qqT   and given that , according to (A.8) it holds 
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under CPT, it follows that 
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and hence that 
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Thence, if we consider the trace R
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  , where R is the trace of the Ricci curvature tensor, it 
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given that the trace of the (antisymmetric) electromagnetic QEITD is null.  
From the above result, we can infer that the CPT transformation leads to the change of the sign of the space-time 

scalar curvature (i.e., RR  ) so that QGEs are invariant under the overall CPTR inversion transformation. 
 
6. General Comment 
On one side the quantum equation defines the 
evolution of the particle wave function and the 
associated spatial mass density distribution. On the 
other side, the gravity equation defines how the 4-D 
curvature  is generated by the mass distribution and 
its movement through the associated tensor of 
energy-impulse  density.  
 
The hydrodynamic approach allows to obtain the 
energy-impulse tensor once the wave function of the 
particle is defined  leading to a complete and well 
defined system of differential equations of evolution. 
 
The biunique correspondence between the standard 
quantum mechanics and the hydrodynamic 
representation [22,30] warrants that once  the tensor 
of energy-impulse  density is written as a function of 

the wave-function, the QGEs are independent by the 
hydrodynamic formalism.  
 
The CPTR symmetry of the QGEs embodies the CPT 
symmetry of quantum mechanics in a wider one that 
requires that matter and antimatter bend the space in 
opposite way. 
 
This property implies interesting consequences to the 
quantum-gravitational dynamics. 
 
First of all, it leads to have a repulsive matter-
antimatter Galilean gravitational field [20,31]. Even 
if this output is the subject of discordant opinions 
[15], if confirmed it may bring to the elegant solution 
of the problem of the zero-point of quantum energy 
density of vacuum, an enormous amount of energy 
that in the gravitational approach would lead to a 
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very high curvature of the space without matter.  
 
If the antimatter brings a negative curvature (respect 
to that of matter) and since the vacuum is represented 
by a sea of virtual particles and antiparticles [29] (in 
equal number) the total curvature will be 
spontaneously null  . 
Moreover, eq. (35-36) shows the presence of the 
cosmological constant that, due to the quantum 
potential derivatives, is different from zero just in the 
places where the mass is localized (in quasi-punctual 
particles) so that the spatial mean can lead to the right 
order of magnitude of the cosmologically observed 
values [23].  
 
Finally, the matter-antimatter repulsion can lead to 
their phase separation generating cosmological 
domains (or even universes) where matter (or 
antimatter) prevail [32] allowing the solution of the 
enigma of the abundance of matter. 
 
7. Conclusions 
In this work the quantum gravitational equations are 
obtained for particles interacting by means of the 
electromagnetic force and owning half unit of spin. 
This is achieved  by defining the energy-impulse 
tensor density through the hydrodynamic quantum 
formalism. The electro-QGEs show to be invariant 
under the CPT inversion associated to the change of 
sign of the trace of the Ricci tensor of curvature. 
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Appendix A 
 

In this section we calculate 
t
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
 and its limit

t

S



 0
for a generic superposition of states with positive (i.e., matter) 

and negative (antimatter) energy eigenvalues. 

To this end we use the hydrodynamic expression of the wave-function 

n
n nn

iSiS
| | exp[ ] | | exp[ ]    

 
      (A.1) 

where 

n
n n

iS
| | exp[ ] 


         (A.2) 

are the eigenfunctions (that for sake of simplicity we suppose with discrete eigenvalues). 

For systems with time independent Hamiltonian we can write 

n
n nn

iSiS
| | exp[ ] | |exp[ ]    

 
      (A.3) 

and, hence, 
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. (A.4) 

By using (A.3) we obtain both 
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and 
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Moreover, given that for the classical limit  
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it follows that 
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and, hence, for pure matter or antimatter states, that 
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that  for a spinless uncharged particle reads 

 

20S
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t

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         (A.14) 

 

 

Appendix B 

Analysis of the Quantization Condition and 
Determination of the Quantum Eigenstates in the 
Quantum Hydrodynamic Description 
 
If we look at the mathematical manageability of 

quantum hydrodynamic equations of quantum 

mechanics (2.a-2.b) no one would consider  them.  

Nevertheless, the QHEs attract much attention by 

researchers. The motivation resides in the formal 

analogy with the classical mechanics that is 

appropriate to study those phenomena connecting the 

quantum behavior and the classical one.  

In order to establish the hydrodynamic analogy, the 

gradient of action has to be considered as the 

momentum of the particle.  When we do that, we 

broaden the solutions so that not all momenta 

solutions of the hydrodynamic equations can be 

solutions of the Schrödinger problem.  

As well described in ref.[12], the state of a particle in 

the QHEs is defined by the real functions 

(q, t)
n

2||    and   )t,q(Sp  . 

The restriction of the solutions of the QHEs to those 

ones of the standard quantum problem comes from 

additional conditions that must be imposed  in order 

to obtain the quantization of the action.  

The integrability of the action gradient, in order to 

have the scalar action function S, is warranted if the 

probability fluid is irrotational, that being

 

  
q

q

q

q

)t,q( pdlSdlS

00

           (B.1) 

is warranted by the condition 
 

0   p          (B.2) 
 
so  that it holds 
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0       


 qmdlc         (B.3) 

 
Moreover, since the action is contained in the exponential argument of the  wave function, all the multiples of  

2 , with 

                     00 ...,,,,nnpdlSnSS
q

q

)t,q()t,q()t,q(n 321022

0

0
      (B.4) 

are accepted.  
 
Quantum Eigenstates 
Below, we will show how the problem of finding the quantum eigenstates can be carried out in the hydrodynamic 

description. Since the method does not change either in classic approach or in the relativistic one, we give here an 

example in the simple classical case of a classical harmonic oscillator. 

In the hydrodynamic description, the eigenstates are identified by their property of stationarity that is given by the 
“equilibrium” condition  
 

 0 


p            (B.5.a) 

 
(that happens when the force generated by the quantum potential exactly counterbalances that one stemming from 

the Hamiltonian potential) with the initial “stationary” condition 

 

 0  


q .           (B.5.b) 

  .  

The initial condition (B.5.b) united to the equilibrium condition leads to the stationarity 0  


q  along all times and, 

therefore, by (B.5.a) the eigenstates are irrotational.  

Since the quantum potential changes itself with the state of the system, more than one stationary state (each one with 

its own  nquV ) is possible and more than one quantized eigenvalues of the energy may exist.  

For a time independent Hamiltonian )q(V
m

p
H 

2

2

, whose hydrodynamic energy reads 

[31] qu)q( VV
m

p
E 

2

2

, with eigenstates )q(n (for which it holds 0  


qmp ) it follows that 
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where )(VV nqunqu  , and that 

 

)q(nnqu VEV           (B.7) 

 
where (B.7) is the differential equation, that in the quantum hydrodynamic description, allows to derive to the 
eigenstates.  
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For instance, for a harmonic oscillator (i.e., 
2

2

2
q

m
V )q(


 ) (B.7) reads 
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 If for (B.8)  we search a solution of type  
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we obtain that 
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 (where (x)Hn represents the n-th Hermite polynomial). 

Therefore, the generic n-th eigenstate reads 
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From (B.10) it follows that the quantum potential of the n-th eigenstate reads 
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where it has been used the recurrence formula of the Hermite polynomials  
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that by (B.7) leads to 

)n(VVE )q(nqun
2

1
        (B.14) 

 

The same result comes by the calculation of the eigenvalues that read  
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
 and where (q, t)(q, t)

*
(q, t)

n . Moreover, by using (B.6, B.14-B.15) for 

eigenstates it follows that 

 

0
2

1




))n(()VH(p qu  ,     (B.16) 

0





m

S
q

)t,q(
,
        

(B.17)  

Confirming the stationary equilibrium condition of the eigenstates. 

 

Finally, it must be noted that since all the quantum 

states are given by the generic linear superposition of 

the eigenstates (owing the irrotational momentum 

field 0


qm ) it follows that all quantum states are 

irrotational. Moreover, since the Schrödinger 

description is complete, do not exist others quantum 

irrotational states in the hydrodynamic description. 

In the relativistic case, the hydrodynamic solutions 

are determined by the eigenstates nn
   ,   

derived by the irrotational stationary equilibrium 

condition applied to the momentum fields of matter 

and antimatter of equation (23), respectively . 

 

 

 
 




