
  

 

 

 

 

 
 

 
This article is published under the terms of the Creative Commons Attribution License 4.0 

Author(s) retain the copyright of this article. Publication rights with Alkhaer Publications. 

Published at: http://www.ijsciences.com/pub/issue/2016-06/ 
DOI: 10.18483/ijSci.1044; Online ISSN: 2305-3925; Print ISSN: 2410-4477 
 
 
 
 
 Samaneh Soradi Zeid (Correspondence) 

 s_soradi@yahoo.com 

 + 

A Neural Network Approach for Solving 
Fractional-Order Model of HIV Infection of CD4+T-

Cells 

Samaneh Soradi Zeid1, Mostafa Yousefi2 
1Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. e-mail:  
2National Iranian Oil Products Distribution Company (NIOPDC), Zahedan Region, Zahedan, Iran. 

 

Abstract—In this paper the perceptron neural networks are applied to approximate the solution of Fractional-order 

model of HIV infection of CD4+T-cells that includes a system of fractional differential equations (FDEs). We 

converted this model to a system of Volterra integral equations. Then, by using perceptron neural networks ability in 

approximating a nonlinear function, we propose approximating functions to approach parameters of this system of 

Volterra integral equations. By obtaining the approximated solution of this system, the  unknown parameters of the 

original fractional HIV model are adjusted. Numerical results illustrate this approach is simple and accurate when 

applied to systems of FDEs. 
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I. Introduction 
Recently, fractional calculus (FC) has been 

extensively applied in many fields. Many 

mathematicians and applied researchers have tried to 

model real processes using the fractional calculus. 

Nigmatullin and Nelson described in terms of 

fractional kinetics in complex systems [10]. Jesus, 

Machado and Cunha analyzed the fractionalorder 

dynamics in botanical electrical impedances [5], [6]. 

Petrovic, Spasic and Atanackovic developed a 

fractional-order mathematical model of a human root 

dentin [8]. In biology, it has been deduced that the 

membranes of cells of biological organism have 

fractionalorder electrical conductance [7] and then 

are classified in groups of non-integer order models. 

Fractional derivatives embody essential features of 

cell rheological behavior and have enjoyed greatest 

success in the field of rheology [12]. The reason of 

using fractional order differential 

equationsisthattheyarenaturally related to systems 

with memory which exists in most biological systems 

and they are closely related to fractals which are 

abundant in biological systems. Also, it has been 

shown that modelling the behavior of brainstem 

vestibuleoculumotor neurons by FDEs has more 

advantages than classical integer-order modelling 

[11]. FDE are naturally related to systems with 

memory which exists in most biological systems. 

Also, they are closely related to fractals, which are 

abundant in biological systems [3].  

 

The aim of this paper is to use the ability of 

perceptron neural networks in function 

approximation, to approximate the solution of 

fractional order model of HIV infection of CD4+T 

cells. The main motivation of using neural networks 

is that the use of neural networks provides 

differentiable solutions. In the next section we 

introduce some necessary preliminaries from model 

derivation. Section 3 introduces the neural network 

methodology as the approximation method. 

Numerical simulations are presented in section 4. 

Finally, conclusions are included in the last section. 

 

II. Model derivation 

Here, we introduce fractional-order into the model of 

HIV infection of CD4+T-cells [9]. This model is 

described by the following set of FDEs: 



 

 

 

A Neural Network Appoach for Solving Fractional-Order Model HIV Infection of CD4+T-Cells

 

 

http://www.ijSciences.com                           Volume 5 – June 2016 (06) 

 66 

{

𝐷𝛼𝑇(𝑡) = 𝑠 − µ𝑇𝑇(𝑡) + 𝑟𝑇(𝑡) (1 −
𝑇(𝑡)+𝐼(𝑡)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇(𝑡)         

𝐷𝛼𝐼(𝑡) = 𝑘1
′𝑉(𝑡)𝑇(𝑡) − µ𝐼𝐼(𝑡),                                                     

𝐷𝛼𝑉(𝑡) = 𝑁µ𝑏𝐼(𝑡) − 𝑘1𝑉(𝑡)𝑇(𝑡) − µ𝑉𝑉(𝑡),                              

 (1) 

with the initial conditions: 

𝑇(0) = 𝑇0, 𝐼(0) = 𝐼0,   𝑉(0) = 𝑉0, (2) 

where, 

𝑇0 =
𝑟−µ𝑇+[(𝑟−µ𝑇)

2+4𝑟𝑠𝑇𝑚𝑎𝑥
−1 ]−1/2

2𝑟𝑇𝑚𝑎𝑥
−1 . (3) 

In this model, 𝑇 , 𝐼 and 𝑉 denote the concentration of 

uninfected CD4+T cells, infected CD4+T cells, and 

free HIV virus particles in the blood, respectively. 

We note that s is the source of CD4+T-cells from 

precursors, µ𝑇 is the natural death rate of CD4+T-

cells (µ𝑇𝑇𝑚𝑎𝑥 > 𝑠, [2]), 𝑟 is their growth rate (thus, 

𝑟 > µ𝑇   in general), and 𝑇𝑚𝑎𝑥  is their carrying 

capacity. The parameter 𝑘1  represents the rate of 

infection of T-cells with free virus. 𝑘1
′  is the rate at 

which infected cells become actively infected. µ𝐼  is a 

blanket death term for infected cells, to reflect the 

assumption that we do not initially know whether the 

cells die naturally or by bursting. In addition, µ𝑏 is 

the lytic death rate for infected cells. Since 𝑁 viral 

particles are released by each lysing cell, this term is 

multiplied by the parameter 𝑁 to represent the source 

for free virus (assuming a one-time initial infection). 

Finally, µ𝑉 is the loss rate of virus. The parameters 

value of this FDE system is reported in Table 1.

  

TABLE 1: Variable and parameters for HIV infection model of CD4+t-cells. 

Parameters Description     Value/unit 

µ𝑇  𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝐷4 + 𝑇    0.02 𝑑𝑎𝑦−1  

µ𝐼   𝐵𝑙𝑎𝑛𝑘𝑒𝑡 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝐶𝐷4 + 𝑇   0.26 𝑑𝑎𝑦−1  

µ𝑉  Death rate of free virus    2.4 𝑑𝑎𝑦−1  

µ𝑏  Lytic death rate for infected cells    0.24 𝑑𝑎𝑦−1  

𝑘1  Rate CD4 + T become infected with virus    2.4. 10−5𝑚𝑚−3𝑑𝑎𝑦−1  

𝑘1
′   𝑅𝑎𝑡𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑏𝑒𝑐𝑜𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑒    2 × 10−5𝑚𝑚−3𝑑𝑎𝑦−1  

𝑟  Growth rate of CD4 + T population    0.03 𝑑𝑎𝑦−1  

𝑁  Number of virions produced by infected CD4 + T    𝑉𝑎𝑟𝑖𝑒𝑠  

𝑇𝑚𝑎𝑥   Maximal population level of CD4 + T    1500𝑚𝑚−3  

𝑠  Source term for uninfected CD4 + T    10𝑚𝑚−3𝑑𝑎𝑦−1  

𝑇0  CD4 + T population for HIV − negative persons    1000𝑚𝑚−3  

 

Throughout this paper, we set 𝐷𝛼(0 <  𝛼 ≤  1) as 

the Caputo fractional derivative of order 𝛼. Notice 

that, there are several approaches to the 

generalization of the notion of differentiation to 

fractional orders e.g. Riemann-Liouville, Caputo and 

Generalized Functions approach. For the concept of 

fractional derivative, we will adopt Caputos 

definition, which is a modification of the Riemann-

Liouville definition and has the advantage of dealing 

properly with initial value problems. We first give the 

definition of fractional-order integration and 

fractional-order differentiation [4]: The fractional 

integral of order α of function 𝑓 ∈  𝐶[𝑎 , 𝑏] is given 

by: 

𝐼𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ (𝑥 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏,
𝑥

0
 (4) 

where 𝐼0𝑓(𝑥) = 𝑓(𝑥), 𝛼 > 0, 𝑥 > 0. 
Caputo fractional derivatives of order 𝛼, 𝑛 −  1 <
 𝛼 ≤  𝑛, of function 𝑓 ∈  𝐶[𝑎 , 𝑏] is given by: 

𝐷0𝑓(𝑥) = 𝐽𝑚−𝛼 (
𝑑𝑚

𝑑𝑥𝑚
𝑓(𝑥)), (5) 

where 𝑚 ∈  𝑁 and 𝑚 −  1 ≤  𝛼 ≤  𝑚. The 

following theorem, helps us to apply a fractional 

integral over a fractional derivative. [1]. Let 𝛼 >  0 

and  =  ⌈𝛼⌉ . If 𝑓 ( 𝑥 )  ∈  𝐶𝑛[𝑎 , 𝑏]; then: 

𝐼𝛼(𝐷𝛼𝑓)(𝑥) = 𝑓(𝑥) − ∑
𝑓(𝑘)(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘.𝑛−1

𝑘=0  (6) 

In particular, if 0 <  𝛼 ≤  1 and 𝑓 ( 𝑥 )  ∈  𝐶[𝑎 , 𝑏], then: 

𝐼𝛼(𝐷𝛼𝑓)(𝑥) = 𝑓(𝑥) − 𝑓(𝑎).  (7) 

By applying fractional integral operator for the first equation of (1), we have: 

𝐼𝛼(𝐷𝛼𝑇) = 𝐼𝛼 (𝑠 − µ𝑇𝑇(𝑡) + 𝑟𝑇(𝑡) (1 −
𝑇(𝑡)+𝐼(𝑡)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇(𝑡)). (8) 

According to Theorem II and definition of fractional integral we have: 

𝑇(𝑡) − 𝑇(0) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1 (𝑠 − µ𝑇𝑇(𝜏) + 𝑟𝑇(𝜏) (1 −

𝑇(𝜏)+𝐼(𝜏)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇(𝜏)) 𝑑𝜏,

𝑡

𝑎
 (9) 

or equivalently it can be rewritten as the following Volterra integral equation: 

http://www.ijsciences.com/
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𝑇(𝑡) = 𝑇(0) +
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1 (𝑠 − µ𝑇𝑇(𝜏) + 𝑟𝑇(𝜏) (1 −

𝑇(𝜏)+𝐼(𝜏)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇(𝜏)) 𝑑𝜏.

𝑡

𝑎
 (10) 

Following a similar approach, the second and third equation of (1) with initial conditions (2), can be converted to the 

following Volterra integral equations, respectively: 

𝐼(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑘1

′𝑉(𝜏)𝑇(𝜏) − µ𝐼𝐼(𝜏))𝑑𝜏,
𝑡

𝑎
 (11) 

𝑉(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑁µ𝑏𝐼(𝜏) − 𝑘1𝑉(𝜏)𝑇(𝜏) − µ𝑉𝑉(𝜏))𝑑𝜏.
𝑡

𝑎
 (12) 

 

III. Approximation Method 

To solve the farctional HIV infection of CD4+T-cells (1)-(2), by using the mathematical structure of a single layer 

neural networks, we can consider the following approximate functions for the concentration of uninfected CD4+T 

cells, infected CD4+T cells, and free HIV virus particles in the blood, respectively, by: 

{

𝑇𝑁(𝑡, 𝜓𝑇) =  𝐴(𝑡) + 𝐵(𝑡)𝑁(𝑡, 𝜓𝑇)       

𝐼𝑁(𝑡, 𝜓𝐼) = 𝐶(𝑡) + 𝐷(𝑡)𝑁(𝑡, 𝜓𝐼)            

𝑉𝑁(𝑡, 𝜓𝑉) = 𝐹(𝑡) + 𝐺(𝑡)𝑁(𝑡, 𝜓𝑉),         

 (13) 

where 𝐴(𝑡 ) , 𝐵 (𝑡 ) , 𝐶 (𝑡 ) , 𝐷(𝑡 ) , 𝐹 (𝑡 ) and (𝐺(𝑡 ) are real single variable functions such that the approximate 

functions 𝑇𝑁 , 𝐼𝑁 and 𝑉𝑁 satisfy the initial condition (2). For example, if 𝑇 (0)  = 0 then we must choose 𝐴(𝑡 ) and   

𝐵 (𝑡 ) such that 𝑇_𝑁(0, 𝜓𝑁)  = 0, thus we can choose 𝐴(𝑡 )  =  0 and 𝐵 (𝑡 )  =  𝑡 . Also, 𝜓𝑇 , 𝜓𝐼  and 𝜓𝑉 are the 

corresponding weight vectors containing the weighta of 𝑇 (𝑡 ) , 𝐼 (𝑡 ) and 𝑉 (𝑡 ) , respectively. By substituting the 

above approximate functions in (10)-(12) we get: 

{
  
 

  
 𝑇𝑁(𝑡, 𝜓𝑇) = 𝑇0 +

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑠 − µ𝑇𝑇𝑁(𝜏, 𝜓𝑇)
𝑡

𝑎
                                                                 

+𝑟𝑇𝑁(𝜏, 𝜓𝑇) (1 −
𝑇𝑁(𝜏,𝜓𝑇)+𝐼𝑁(𝜏,𝜓𝑇)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇𝑁(𝜏, 𝜓𝑇))𝑑𝜏

𝐼𝑁(𝑡, 𝜓𝐼) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑘1

′𝑉𝑁(𝜏, 𝜓𝑉)𝑇𝑁(𝜏, 𝜓𝑇) − µ𝐼𝐼𝑁(𝜏, 𝜓𝐼))𝑑 
𝑡

𝑎
                                  

𝑉𝑁(𝑡, 𝜓𝑉) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑁µ𝑏𝐼𝑁(𝜏, 𝜓𝐼) − 𝑘1𝑉𝑁(𝜏, 𝜓𝑉)𝑇𝑁(𝑡, 𝜓𝑇) − µ𝑉𝑉𝑁(𝜏, 𝜓𝑉))𝑑𝜏.
𝑡

𝑎

 (14) 

Now, we look for an approximation for functions 𝑇𝑁 , 𝐼𝑁 and 𝑉𝑁. To solve (14) we introduce the following squared 

residual error functions: 

{
  
 

  
 𝑅𝑇(𝑡, 𝜓) = [𝑇𝑁(𝑡, 𝜓𝑇) − 𝑇0 −

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑠 − µ𝑇𝑇𝑁(𝜏, 𝜓𝑇)
𝑡

𝑎
                                                                 

+𝑟𝑇𝑁(𝜏, 𝜓𝑇) (1 −
𝑇𝑁(𝜏,𝜓𝑇)+𝐼𝑁(𝜏,𝜓𝑇)

𝑇𝑚𝑎𝑥
) − 𝑘𝑉𝑇𝑁(𝜏, 𝜓𝑇))𝑑𝜏]

2

𝑅𝐼(𝑡, 𝜓) = [𝐼𝑁(𝑡, 𝜓𝐼) −
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑘1

′𝑉𝑁(𝜏, 𝜓𝑉)𝑇𝑁(𝜏, 𝜓𝑇) − µ𝐼𝐼𝑁(𝜏, 𝜓𝐼))𝑑𝜏]
2 

𝑡

𝑎
                                  

𝑅𝑉(𝑡, 𝜓) = [𝑉𝑁(𝑡, 𝜓𝑉) −
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1(𝑁µ𝑏𝐼𝑁(𝜏, 𝜓𝐼) − 𝑘1𝑉𝑁(𝜏, 𝜓𝑉)𝑇𝑁(𝑡, 𝜓𝑇) − µ𝑉𝑉𝑁(𝜏, 𝜓𝑉))𝑑𝜏]

2,
𝑡

𝑎

 (15) 

where 𝜓 =  (𝜓𝑇  , 𝜓𝐼  , 𝜓𝑉) is a vector containing all weights of three approximator functions (13). To solve (15), we 

divide the interval [𝑎 , 𝑏] into m subinterval and calculate the integrals in any subintervals, by using any numerical 

integration technique such as Simpson’s rule. Then, we introduce the following unconstrained optimization problem: 

min
𝜓
𝑅(𝜓) = ∑ [𝑅𝑇(𝑡𝑖 , 𝜓) + 𝑅𝐼(𝑡𝑖, 𝜓) + 𝑅𝑉(𝑡𝑖 , 𝜓)],

𝑚
𝑖=1  (16) 

which can be solved by any classical mathematical optimization algorithm such as Quasi-Newton methods that we 

use in this paper. Suppose that 𝜓∗  =  (𝜓𝑇
∗  , 𝜓𝐼

∗ , 𝜓𝑉
∗ )  is the optimal solution of optimization problem (16). Since the 

neural networks are universal approximators, the obtained weights are convergent to the optimal values. This 

concept is illustrated in numerical examples by plotting the convergence of the weights. Substituting these optimal 

weights into the corresponding approximate functions 𝑇𝑁 , 𝐼𝑁 and 𝑉𝑁 in (13), we get the following final approximated 

solution of fractional HIV infection of CD4+T-cells (1)-(2): 

{

𝑇𝑁(𝑡, 𝜓𝑇
∗ ) =  𝐴(𝑡) + 𝐵(𝑡)𝑁(𝑡, 𝜓𝑇

∗ )        

𝐼𝑁(𝑡, 𝜓𝐼
∗) = 𝐶(𝑡) + 𝐷(𝑡)𝑁(𝑡, 𝜓𝐼

∗)            

𝑉𝑁(𝑡, 𝜓𝑉
∗ ) = 𝐹(𝑡) + 𝐺(𝑡)𝑁(𝑡, 𝜓𝑉

∗ ).         

 (17) 

We mention that to attain more accurate solutions, we can use more neurons or use any heuristic optimization 

algorithm. 

 

IV. Numerical Results 

In this section, by using the ability of perceptron 

neural network model in approximating the  solution 

of fractional model of HIV infection of CD4+T-cells 

(1) while considering the conditions (2), we propose 

the following approximation functions: 
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{

𝑇𝑁(𝑡, 𝜓𝑇) =  𝑇0 + 𝑡𝑁(𝑡, 𝜓𝑇)

𝐼𝑁(𝑡, 𝜓𝐼) = 𝑡𝑁(𝑡, 𝜓𝐼)            

𝑉𝑁(𝑡, 𝜓𝑉) = 𝑡𝑁(𝑡, 𝜓𝑉).         

 (18) 

 

It is easy to check that the proposed approximate 

functions TN, IN and VN satisfy the boundary 

conditions 𝑇𝑁(0, 𝜓𝑇)  =  𝑇0, 𝐼𝑁(0, 𝜓𝐼)  =  0 and 

 𝑉𝑁(0, 𝜓𝑉)  =  0. Now, we rewrite (15) for this 

approximation functions and finally solve the 

optimization problem (16) for 𝑚 =  350. To show 

the convergence of the weights vector ψ during the 

optimization step, the values of ψ are plotted in Fig. 

1.  

 
Fig. 1. Covergence of the weights vector 𝜓 during the optimization step. 

 

Also, Fig. 2 illustrate the approximate values of 𝑇 , 𝐼 and 𝑉 for several values of derivative order α and it is shown 

that when 𝛼 →  1 the solution of the fractional model (1)-(2), reduce to the standard solution 𝑇 (𝑡 ) , 𝐼 (𝑡 ) and 

𝑉 (𝑡 ).  
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Fig. 2. The concentration of the uninfected (𝑇 ) and infected CD4+T cells( 𝐼 ) and free HIV virus particles (𝑉 ) with 

various choices of 𝛼: Gray solid line (𝛼 =  1), Dotted line (𝛼 =  .99), Black solid line (𝛼 =  .95). 

 

V. Conclusions 

In this paper, we employed the neural networks 

approach for studying the approximate solutions of 

nonlinear ordinary differential equations system of 

fractional order such as human T-cell lymphotropic 

virus HIV infection of CD4+T-cells. We 

demonstrated the accuracy and efficiency of these 

methods by solving some ordinary differential 

equation systems of fractional order. From the 

obtained results in the presented figures, it is clear 

that in the primary stage of the infection with the 

HIV virus, a dramatically decrease in the level of the 

CD4+T-cells occurs because of the death of such 

infected cells. On the other hand, the number of the 

free HIV virus particles and the number of 

susceptible CD4+T-cells increase. This assumes that 

the growth of healthy T-cells slows down during the 

course of HIV infection. 

 

REFERENCES 
1) A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and 

applications of fractional differential equations, (Vol. 204). 

(2006) Elsevier Science Limited. 
2) A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV 

infection of CD4+T-cells, Mathematical Bioscience 114 

(1993) 81-125. 
3) E. Ahmed, A.S. Elgazzar, On fractional order differential 

equations model for nonlocal epidemics, Physica A 379 

(2007) 607-614. 
4) I. Podlubny, Fractional Differential Equations, Academic 

Press, New York, 1999. 

5) I.S. Jesus, J.A.T. Machado, J.B. Cunha, Fractional electrical 
impedances in botanical elements, Journal of Vibration and 

Control 14 (2008) 1389-1402. 

6) I.S. Jesus, J.A.T. Machado, J.B. Cunha, Fractional order 
electrical impedance of fruits and vegetables, in: Proceedings 

of the 25th IASTED International Conference MODELLING, 

IDENTIFICATION, AND CONTROL, February 6-8, 2006, 
Lanzarote, Canary Islands, Spain. 

7) K.S. Cole, Electric conductance of biological systems, in: 

Proc. Cold Spring Harbor Symp. Quant. Biol, Cold Spring 
Harbor, New York, 1993, pp. 107-116. 

8) L.M. Petrovic, D.T. Spasic, T.M. Atanackovic, On a 

mathematical model of a human root dentin, Dental Materials 
21 (2005) 125-128 . 

9) R.V. Culshaw, S. Ruan, A delay-differential equation model 

of HIV infection of CD4+T-cells, Mathematical Bioscience 
165 (2000) 27-39. 

10) R.R. Nigmatullin, S.O. Nelson, Recognition of the fractional 

kinetics in complex systems: Dielectric properties of fresh 
fruits and vegetables form 0.01 to1.8 GHz, Signal Processing 

86 (2006) 2744-2759. 

11) T.J. Anastasio, The fractional-order dynamics of bainstem 
vestibulooculomotor neurons, Biological Cybernetics 72 

(1994) 69-79. 

12) V.D. Djordjevi, J. Jari, B. Fabry, J.J. Fredberg, D. Stamenovi, 
Fractional derivatives embody essential features of cell 

rheological behavior, Annals of Biomedical Engineering 31 

(2003) 692-699. 

http://www.ijsciences.com/

