Nutritional Evaluation of Five Species of Grain Amaranth – An Underutilized Crop

Pamela E. Akin-Idowu1, Oyeronke A. Odunola2, Michael A. Gbadegesin2, Olufemi T. Ademoyegun3, Ayodeji O. Aduloju1, Yemisi O. Olagunj1

1Fruits and Biotechnology Programme, National Horticultural Research Institute, P.M.B. 5432, Ibi-Ishin, Ibadan, Nigeria
2Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Nigeria
3Product Development Programme, National Horticultural Research Institute, P.M.B. 5432, Ibi-Ishin, Ibadan, Nigeria

Abstract: Variation in the proximate and mineral compositions of twenty nine accessions of grain amaranth (Amaranthus), belonging to five species: Amaranthus caudatus, A. cruentus, A. hybrid, A. hypochondriacus and A. hybridus were evaluated. Results showed that significant (p < 0.05) differences were observed in the proximate and mineral compositions among all the species evaluated. Amaranthus caudatus had the highest levels of crude fibre (4.04 g/100g), sodium (8.95 mg/kg), phosphorus (5765.64 mg/kg), magnesium (2219.15 mg/kg) and aluminum (111.09 mg/kg) contents. Amaranthus cruentus had the highest levels of crude fat (8.68 g/100g), zinc (59.49 mg/kg), copper (6.62 mg/kg), manganese (136.44 mg/kg) and calcium (164.45 mg/kg). Amaranthus hybridus had the highest levels of protein (17.89 g/100g) and starch (38.01 g/100g). Phosphorus was the most abundant mineral present, followed by potassium and magnesium; while selenium was the least abundant mineral element present. The grain amaranth species have higher protein, crude fibre, starch and essential minerals than commonly consumed cereals and hold promise as a healthy alternative to these cereals and their products.

Keywords: Amaranth, minerals, proximate analysis, species variation.

INTRODUCTION: Malnutrition remains one of the public health problems among preschool children contributing to more than half of deaths in children worldwide. (FAO Canada, 2002). Child malnutrition was associated with 54% of deaths in children in developing countries in 2001 (WHO, 2013a; Muller et al., 2005). Protein-energy malnutrition (PEM), first described in the 1920s, is observed most frequently in developing countries but has been described with increasing frequency in hospitalized and chronically ill children in the United States (Hendricks et al., 1995). In addition to PEM, children may be affected by micronutrient deficiencies, which also has a detrimental effect on growth and development. The most common and clinically significant micronutrient deficiencies in children and childbearing women throughout the world include deficiencies of iron, iodine, zinc, and vitamin A and are estimated to affect as many as two billion people (Aphane et al., 2002).

Although fortification programs have helped diminish deficiencies of iodine and vitamin A in individuals in the United States, these deficiencies remain a significant cause of morbidity in developing countries, whereas deficiencies of vitamin C, B, and D have improved in recent years. Micronutrient deficiencies and protein and calorie deficiencies must be addressed for optimal growth and development to be attained in these individuals. Three broad strategies, namely, supplementation through high-dose capsules, food fortification, and food diversification are explored worldwide for combating nutrient deficiency, especially among children. (Aphane et al., 2002). Current treatment for children involves the use of special formulated food which is expensive and not sustainable in the long term (Jed, 2005). Food diversification is the more sustainable long-term strategy to address nutrient deficiency. Although foods of animal origin are the best sources of vitamin A, protein and some minerals these food items are expensive and often out of economic reach.

This article is published under the terms of the Creative Commons Attribution License 4.0 Author(s) retain the copyright of this article. Publication rights with Alkhaer Publications. Published at: http://www.ijsciences.com/pub/issue/2017-01/ DOI: 10.18483/ijSci.1131; Online ISSN: 2305-3925; Print ISSN: 2410-4477
of poor households. Exploration of underutilized nutrient-rich foods that can be produced inexpensively to meet the nutrient requirements for these vulnerable groups would be one of the possible interventions in reducing malnutrition.

Amaranth, a pseudocereal, is recognized as the grain of the future and has received considerable attention in many countries because of its exceptionally nutritional quality of some species that are important sources of food, as either vegetable or grain (Srivastava, 2011). Amaranth can be consumed by persons who are not gluten tolerant such as babies up to six months or those who suffer from celiac disease (Alvarez-Jubete et al., 2009)

Amaranth of the genus Amaranthus belongs to the family Amaranthaceae and consists of nearly 60 species. (Anjali et al., 2013; Kalac et al., 2000). Amaranth is characterized by great diversity of species and wide spectrum of adaptability to diverse environmental conditions with earliest maturity period in the pseudo- and cereal classes (Anjali et al., 2013; Wambugu, 2009; Jacob, 2005). Amaranthus cruentus, A. hypochondriacus and A. caudatus are the essential grain species cultivated for human and animal consumption (Teutonico et al., 1985). The amaranth grain is high in minerals such as calcium, potassium, phosphorus, as well as dietary fiber (Taylor et al., 2014). Amaranth has lysine-rich high protein grains and forms a good source of essential amino acids (Akin-Idowa et al., 2013 and Mota et al., 2016). These dual-purpose plants supply not only nutritious grains but also tasty, leafy vegetables consumed all over the world, as both human food and animal feed. The leaves of amaranth constitute an inexpensive and rich source of protein, carotenoids, vitamin C, dietary fibre, calcium, iron, zinc, magnesium and phosphorus (Shukla et al., 2006; Ozbucak et al., 2007). Amaranth protect against several disorders such as defective vision, respiratory infections, recurrent colds, retarded growth, functional sterility, bleeding tendencies, leucorrhoea, and premature ageing (Bakhru, 2007). Due to its nutritional potential, amaranth presents an interesting alternative in order to increase the range of plants used for nutrition.

Amaranth nutritional values are likely to vary due to influences of environment, genotype and adaptation to specific agro-ecological area under which the plant genotypes have evolved and are adapted (Makobo et al., 2010). Information on nutritional variation among the species is essential for efficient utilization of plant genetic resources. This study therefore evaluated the proximate and mineral composition of 29 accessions of amaranth belonging to five species.

MATERIALS AND METHODS

Twenty nine accessions of Amaranthus belonging to five species: A. caudatus, A. cruentus, A. hybrid, A. hypochondriacus and A. hybridus were used in this study (Table 1). Twenty seven of the accessions were obtained from the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, USA; and two were obtained from the National Horticultural Research Institute (NIHORT) germplasm, Ibadan, Nigeria. They were planted in the experimental field of NIHORT in three replicates in a randomized complete block design.

Sample preparation

Seeds of the twenty nine grain amaranth accessions were harvested at maturity, dried and milled into flour to obtain a homogenous particle size and made to pass through a 40-mesh screen. The milled samples were stored in airtight containers and kept at 4°C prior to analysis.

Chemical Analysis

Moisture, ash, crude fat and crude fibre were analyzed following the methods of the Association of Official Analytical Chemists (AOAC, 2000). The nitrogen content was estimated by Kjeldhal method based on the assumption that plant proteins contain 16% nitrogen and protein content was calculated using the formula (protein = N x 6.25). Starch and sugar were determined by the methods of Dubois et al., (1956) and McCready, (1970). Mineral elements were determined using an Inductively Coupled Plasma Atomic Emission Spectrometry (ICPAES) according to the method of Hwang et al., (2009).

Statistical analysis

All chemical analyses were carried out in duplicate. Data was analysed by one-way analysis of variance (ANOVA) of SAS (Statistical Analysis Software version 9.1). Significant difference comparisons were done using Duncan’s multiple range test and statistical significance was established at p < 0.05.

RESULTS AND DISCUSSION

Proximate Composition

Results of the proximate composition of five amaranth species are presented in Table 2. Significant (p < 0.05) difference was observed in the proximate composition of all the five amaranth species studied.

The moisture content ranged from 9.30 – 11.54 g/100g. Amaranthus hypochondriacus had the highest level and is significantly (p < 0.05) higher than values obtained in the other species. The moisture content obtained in this study is in agreement with values (10.69 – 12.22 g/100g and 11.40 – 12.07 g/100g) obtained in some grain amaranth species (Kachiguma et al., 2015; Repo-Carrasco-Valencia et al., 2010). They are comparable
to values obtained in major cereals such as wheat (13.30 g/100g) (Ahmed et al., 2012; Becker et al., 1981); maize (9.20 – 10.91 g/100g) (Ullah et al., 2010); rice (15.50 g/100g) oat (14.00 g/100g), sorghum (14.50 g/100g) (McKevith, 2004); and pseudocereals like acha (12.73 g/100g), quinoa (11.32 g/100g) and buckwheat (11.60 g/100g) (Becker et al., 1981; Enyisi et al., 2014). The moisture contents obtained in this study are also similar to 9.20 g/100g obtained for cowpea (Arawande et al., 2015). Moisture content is the most important property affecting stability of the grain during storage (Chelowski, 1991). The moisture content obtained in this study is within the recommended range of 9.00 – 12.00 g/100g for long term storage of flour and seed viability for up to seven years (Singh et al., 2005; O’Brien et al., 2008).

Ash content is an index of mineral content in a plant material (Idris et al., 2011). The ash content obtained in this study ranged from 3.14 – 4.94 g/100g. *Amaranthus hybridus* had the highest ash content, this was significantly (p < 0.05) higher than levels obtained in other species. The moisture content is similar to 3.10 – 3.20 g/100g obtained for four Amaranth species (*A. cruentus*, *A. hypochondriacus*, *A. caudatus* and *A. hybridus*) (Leon-Camacho et al., 2001), and comparable to 3.00 g/100g obtained for cowpea (David et al., 2015). The ash content obtained in this study is higher than 1.10 – 2.95 g/100g obtained for maize and maize products (Enyisi et al., 2014); 1.96 – 2.32 g/100g obtained for maize (Ndokwe et al., 2015) and 1.40 – 3.30 g/100g reported for maize (Maziya-Dixon et al., 2000). Values obtained in this study are also higher than 1.80, 1.59 and 2.60 g/100g obtained for wheat, buckwheat and quinoa, respectively (Berghofer et al., 2007) and 2.25 g/100g obtained for acha (Oburuoga et al., 2012).

Proteins are an abundant component in all cells and almost all except storage proteins are important for biological functions and cell structure (Nielsen, 2003). Plant foods that provide more than 12.00 g/100g of its calorific value from protein are considered a good source of protein (Ali, 2009). Protein content obtained in this study ranged from 13.82 to 17.89 g/100g with highest value observed in *A. hybridus*, this was significantly (p < 0.05) higher than levels obtained for the other species. All five species can be considered to be important sources of dietary protein. Values obtained in this study are similar to 15.50 – 17.10 g/100g obtained for *A. cruentus*, *A. caudatus*, *A. hypochondriacus* and *A. hybridus* (Berganza et al., 2003) and comparable to 18.30 g/100g obtained for some grain amaranth accessions (Kachiguma et al., 2015). The protein content (14.25 g/100g) obtained for *A. caudatus* in this study is similar to 14.19 g/100g obtained for *A. caudatus* (Emire et al., 2012), higher than 9.41 g/100g and 10.23 g/100g obtained for wheat flour (David et al., 2015) and also 4.50 – 9.87 g/100g obtained for maize and maize products (Enyisi et al., 2014). The protein content obtained in this study is also higher than 8.58 g/100g obtained for Acha (*Digitaria exilis*), (Oburuoga et al., 2012), but lower than 24.53 g/100g obtained for cowpea (David et al., 2015). Protein content obtained for *A. hybridus* (17.89 g/100g) and *A. cruentus* (15.81 g/100g) are higher than value obtained for wheat (13.50 to 14.50 g/100g), maize (10.60 to 13.80 g/100g), barley (10.00 to 14.90 g/100g) and oats (12.40 to 12.90 g/100g) (Adeeye et al., 1992). Bélitz et al., (2009) obtained protein content of 11.30 g/100g in wheat; 8.80 g/100g in corn; 10.80 g/100g in oats and 7.70 g/100g in rice, these are lower than values obtained in this study. Ullah et al., (2010) reported that the crude protein contents in some varieties of maize ranged from 7.71 to 14.60 g/100g, these are lower than values obtained for *A. hybridus*, *A. hypochondriacus* and *A. cruentus* in this study.

Fat content ranged from 4.85 to 8.68 g/100g, this is similar to values (7.71 to 8.13 g/100g) obtained for *A. cruentus*, *A. hypochondriacus* and *A. edulis* (Becker et al., 1981); 6.31 – 7.56 g/100g obtained for *A. caudatus* (Repo-Carrasco-Valencia et al., 2010) and 7.49 g/100g obtained for *A. caudatus* (Emire et al., 2012). *Amaranthus cruentus* had the highest fat content (8.68 g/100g), this is not in agreement with value (1.62 g/100g) obtained for *A. cruentus* (Muriuki et al., 2014). The fat contents obtained in this study are higher than values (2.50 g/100g and 1.33 g/100g) obtained for wheat (Becker et al., 1981; David et al., 2015); 2.17 – 4.43 g/100g obtained for maize (Enyisi et al., 2014) and 2.04 g/100g obtained for acha (Oburuoga et al., 2012). The fat contents obtained in this study are also higher than 1.00 g/100g obtained for cowpea (David et al., 2015).

Crude fibre content ranged from 1.89 – 4.04 g/100g, with *A. caudatus* having significantly (p < 0.05) higher level than the other species. The crude fibre content obtained in this study is comparable to 2.68 – 6.73 g/100g obtained for *A. caudatus* and 3.44 – 5.34 g/100g obtained for *A. cruentus* and *A. hypochondriacus* (Repo-Carrasco-Valencia et al., 2010). The crude fibre content obtained in this study is also comparable to 3.21 g/100g obtained for cowpea (David et al., 2015) and 2.60 g/100g obtained for wheat (Becker et al., 1981). Enyisi et al., (2014) obtained a wide range of values (2.10 to 26.77 g/100g) for crude fibre in some *Amaranthus* species.
this is much higher than values obtained in this study. Crude fibre is important in reducing the risk of colon cancer, constipation, diabetes and reducing absorption of cholesterol (Ishida et al., 2000). Pseudocereals contain relatively high amounts of dietary fibre which improves lipid metabolism and takes part in the prevention of LDL-C oxidation (Gorinstein et al., 1998). Children, adults, pregnant and lactating mothers require about 19–25, 21–38, 28 and 29 g of dietary fibre; respectively (National Academy of Sciences, 2001). Consumption of 100 g of grain amaranth could therefore contribute 14 g/100g of the recommended daily allowance.

Total Starch contents in this study ranged from 29.05 - 38.01 g/100g. These are comparable to 22.00 – 45.00 g/100g obtained in pulse grain (Hoover et al., 2010) but lower than 67.30 g/100g obtained in A. cruentus, 48.00 - 69.00 g/100g obtained in some amaranth species (Becker et al., 1981 and Bressani, 1994) and 61.40 g/100g obtained in amaranth (Alvarez-Jubete et al., 2009). Total starch contents obtained in this study are lower than 69.00 g/100g obtained in Quinoa, 67.20 g/100g obtained in Buckwheat and 61.00 g/100g obtained in wheat (Bonafaccia et al., 2003; Souci et al., 1993). Starch contents obtained in quinoa (64.20 g/100g), buckwheat (58.90 g/100g) and wheat (63.00 g/100g) (Alvarez-Jubete et al., 2009) is also higher than values obtained in this study.

Mineral Content

The result of the mineral composition of the five grain amaranth species is shown in Table 3. All the mineral elements differed significantly (p<0.05) among the five species evaluated. Amaranthus caudatus had the highest levels of sodium (8.95 mg/kg), phosphorus (5765.64 mg/kg), magnesium (2219.15 mg/kg) and aluminum (111.09 mg/kg) contents. Amaranthus cruentus had the highest levels of zinc (59.49 mg/kg), copper (6.62 mg/kg), manganese (136.44 mg/kg) and calcium (1642.45 mg/kg) contents. Amaranthus hypochondriacus had the highest levels of iron (149.71 mg/kg) and Potassium (5362.44 mg/kg) contents; while A. hybrid had the highest level of selenium (0.82 mg/kg) content. Phosphorus was the most abundant mineral element present, followed by potassium and magnesium. Similar result was observed for some amaranth species, maize varieties, millet and quinoa in which phosphorus was the most abundant element followed by potassium and then magnesium (Becker et al., 1981, Enyi et al., 2014; Oshodi et al., 1999). Minerals such as manganese, zinc, copper, sodium and selenium were present in low amounts; with selenium being the least abundant mineral element present.

Iron contents ranged from 102.04 to 149.71 mg/kg. Amaranthus hypochondriacus had significantly (p<0.05) higher values than the other species. The iron contents obtained in A. cruentus (117.94 mg/kg) and A. hypochondriacus (149.70 mg/kg) are not in agreement with values 174.00 mg/kg obtained for A. cruentus and 106.00 mg/kg obtained for A. hypochondriacus (Becker et al., 1981). Results of this study are higher than 84.20 mg/kg and 31.00 mg/kg obtained for A. edulis and wheat, respectively (Becker et al., 1981). Kachiguma et al., (2015) reported that the iron contents of some grain amaranth accessions ranged from 36.10 to 225.10 mg/kg, these are either similar to or higher than values obtained for the five amaranth species in this study. The iron content obtained in some maize varieties ranged from 38.02 – 56.14 mg/kg (Ullah et al., 2010) and 18.00 mg/kg (Hassan et al., 2009); these are lower than results obtained in this study. The iron content obtained in all the grain amaranth species studied is higher than the recommended human dietary intake of 15 mg. (Lemtech, 2013), and the suggested supplementation in pregnant women of 30 - 60 mg iron/day. (World Health Organization 2013), indicating that all species are good sources of dietary iron.

The zinc contents ranged from 42.20 - 59.49 mg/kg with highest level observed in A. cruentus, this is significantly (p<0.05) higher than values obtained in the other species. Amaranthus hypochondriacus with zinc content of 46.02 mg/kg was higher than value 38.30 to 38.70 mg/kg reported for A. hypochondriacus (Czerwinski et al., 2004), and also 37.00 to 40.00 mg/kg obtained for A. edulis (Becker et al., 1981). Kachiguma et al., (2015) reported that the zinc content in some grain amaranth accessions ranged from 5.30 - 12.00 mg/kg, this is not in agreement with values obtained in this study. The zinc contents obtained in this study are higher than 29.00 mg/kg obtained in wheat, 33.00 mg/kg in oatmeal, 18.00 mg/kg in rice, 21.00 mg/kg in barley, 30.00 mg/kg in rye; (McKevith, 2004 and Holland et al., 1998), 27.20 mg/kg in mungbean and 3.00 – 37.05 mg/kg in maize (Hassan et al., 2009; Ullah et al., 2010). The zinc contents obtained in this study are also higher than 41.70 mg/kg obtained in acha (Oburuoga et al., 2012). Consumption of grain amaranth can help in the stabilization of the immune function and reduction in complications from disease especially in patients whose immune systems have been compromised.

Copper ranged from 3.37 - 6.62 mg/kg with highest value obtained in A. cruentus, this is twice the value obtained in A. hypochondriacus. The value observed in A. hypochondriacus (3.37 mg/kg) is not in agreement with 8.10 - 8.30 mg/kg obtained for A. hypochondriacus (Czerwinski et al., 2004). The
copper content obtained in this study is lower than 7.90 - 13.20 mg/kg obtained for some amaranth species (Becker et al., 1981) and 11.02 - 14.25 mg/kg obtained for some maize varieties (Ullah et al., 2010). It is however higher than 2.21 – 2.36 mg/kg obtained for some maize varieties (Feli et al., 2005).

The sodium content ranged from 0.00 - 8.95 mg/kg. Sodium was not detected in A. hybridus, this is not in agreement with report of Akubugwo et al., (2007) in which 7.43 mg/kg was obtained in A. hybridus. *Amaranthus caudatus* had the highest sodium content and is significantly (p < 0.05) higher than values obtained for the other species. *Amaranthus caudatus* had three times the value obtained in A. hybrid, six times the value obtained in A. cuentus and nine times the value obtained in A. hypochondriacus. The sodium contents obtained in this study are lower than values obtained in wheat (30.00 mg/kg), rice (40.00 mg/kg), barley (30.00 mg/kg), oats (90.00 mg/kg), rye (10.00 mg/kg), sorghum (70.00 mg/kg) and millet (50.00 mg/kg) (McKevith, 2004, Holland et al., 1998). The sodium contents reported for two maize varieties ranged from 15 – 18 mg/kg (Hassan et al., 2009), this is higher than values obtained in this study.

Manganese content ranged from 63.55 - 136.40 mg/kg with highest value observed in A. cruentus, this was significantly higher than values obtained in all the other species. *Amaranthus cruentus* had twice the amount obtained in A. caudatus. Values obtained in this study are higher than 15.90 - 45.90 mg/kg obtained in amaranth species (Becker et al., 1981) and 31.50 - 31.70 mg/kg obtained for A. hypochondriacus (Czerwinski, 2004).

Potassium was observed to be the second most abundant element in this study and ranged from 4281.00 to 5362.00 mg/kg with highest content observed in A. hypochondriacus. The potassium content is comparable to 2900.00 – 5800.00 mg/kg obtained for some amaranth species, higher than 3700.00 mg/kg obtained for wheat (Becker et al., 1981) and 93.00 – 108.00 mg/kg obtained for two varieties of maize (Hassan et al., 2009). The potassium contents in this study are also higher than 2700.00 mg/kg reported for barley, 4100.00 mg/kg for rice, 3400.00 mg/kg obtained in wheat, 1500.00 mg/kg obtained in rice, 3500.00 mg/kg obtained in oatmeal, 3700.00 mg/kg obtained in miller (McKevith, 2004; Holland et al., 1998) and 2915.00 – 3471.00 mg/kg obtained for some maize varieties (Ullah et al., 2010). The potassium contents obtained in some maize varieties ranged from 3400.00 – 3600.00 mg/kg and 3710.00 – 3930.00 mg/kg (Feli et al., 2005; Hussaini et al., 2008); this is much lower than values obtained in this study.

Phosphorus was observed to be the most abundant mineral present and ranged from 4481.79 - 5765.64 mg/kg. Highest value was observed in A. caudatus, and this was significantly (p<0.05) higher than values obtained in the other species. Phosphorus contents in this study are higher than 3330.00 mg/kg obtained for wheat; 4340.00 mg/kg obtained for rice (Azeke et al., 2011) and 4410.00 - 4580.00 mg/kg obtained for three sorghum cultivars (Nour et al., 2010). They are higher than that of Castor bean oilseed (2650.00 mg/kg) and melon oilseed (2800.00 mg/kg) (Enjuigha et al., 2003). The phosphorus contents in this study were also comparable to values reported for five species of rice (5200.00 – 5400.00 mg/kg) (Oko et al., 2011).

Calcium contents ranged from 1115.90 - 1642.45 mg/kg with highest value observed in A. cruentus, this is significantly higher than values obtained in the other species. The calcium content is lower than 1700.0 - 2150.0 mg/kg obtained in some amaranth species (Becker et al., 1981), lower than 10046.0 mg/kg and higher than 783 mg/kg obtained in some grain amaranth accessions (Kachiguma et al., 2015). The calcium content obtained in this study is much higher than 380.00 mg/kg obtained in wheat, 510.00 mg/kg in rice, 520.00 mg/kg in oatmeal, 200.00 mg/kg in barley, 32.00 mg/kg in rice and 400.00 mg/kg in millet (McKevith, 2004; Holland et al., 1998). The calcium contents were also higher than values obtained for acha (67.00 mg/kg) and mungbean (335.00 mg/kg) (Oburuoga et al., 2012). The high calcium content can meet the recommended daily intake of 1000 mg (Lenntech, 2013) and the suggested supplementation in pregnant women of 1500 - 2000 mg calcium/day (WHO, 2013). The results indicate that the species are good dietary sources of calcium.

Magnesium contents ranged from 1760.23 - 2219.15 mg/kg with highest level observed for A caudatus, this is significantly (p<0.05) higher than values obtained in the other species. Values obtained in this study are not in agreement with value (973.80 mg/kg) obtained for some grain amaranth accessions (Kachiguma et al., 2015), but are comparable to 2300.00 – 3360.00 mg/kg obtained for some amaranth species (Becker et al., 1981). The magnesium content in this study is higher than 1200.00 mg/kg obtained in wheat, 1100.00 mg/kg in rice, 1100.00 mg/kg in oatmeal, 650.00 mg/kg in barley and 920.00 mg/kg in rice (McKevith, 2004; Holland et al., 1998). The magnesium content of some maize varieties ranged from 985.20 – 1625.00 mg/kg, 1060.00 – 1130.00 mg/kg (Ullah et al., 2010, Feli et al., 2005; Hussaini et al., 2008). These are much lower than results obtained in this study.
Nutritional Evaluation of Five Species of Grain Amaranth – An Underutilized Crop

Selenium is an essential micronutrient for humans and animals with antioxidant, anti-cancer and anti-viral effects (Lyons et al., 2003). Selenium was the least abundant element present and ranged from 0.23 - 0.82 mg/kg. Highest value was observed in A. hybridus and this was significantly (p<0.05) higher than values observed in the other species. The value obtained in A. hybridus was three and half times the value obtained in A. caudatus, A. hypochondriacus and A. hybridus. Selenium content of grains or cereals vary depending on the selenium content of the soil and is responsible for the wide range of values (Graham et al., 2005). Amaranthus hypochondriacus having selenium content of 0.27 mg/kg is similar to values (0.22 - 0.26 mg/kg) obtained in A. hypochondriacus (Czerwinski 2004). The selenium content obtained in A. hybridus and A. cruentus in this study are higher than 0.43 mg/kg and 0.66 mg/kg obtained in wheat and barley, respectively (Cordain, 1999). They are also higher than values (0.04 mg/kg) obtained in maize and (0.10 - 0.13 mg/kg) obtained in rice (Cordain, 1999). The selenium contents obtained in this study are higher than 0.06 mg/kg obtained in wheat, 0.10 mg/kg in rice; 0.03 mg/kg in oatmeal and 0.01 mg/kg in barley (McKeith, 2004; Holland et al., 1998).

CONCLUSION

Results of this study indicate that the grain amaranth species vary greatly in terms of proximate and mineral compositions. This variability observed is due to both genetic and environmental factors which may influence the individual chemical composition of the grain. Some amaranth species have higher nutritional compositions than conventional cereals such as wheat, rice, rye, barley, millet, sorghum, acha, oatmeal and maize. These species can provide essential minerals, protein and energy requirements to the daily diet of vulnerable groups in rural communities. Thus, nutrient variation observed will be useful in designing strategies that maximize the utilization of amaranth germplasm.

ACKNOWLEDGEMENTS

The authors are grateful to USDA-ARS in Ames, USA and NIHORT, Ibadan, Nigeria; for providing seeds of the different amaranth accessions used in this study.

REFERENCES

http://www.ijSciences.com

Table 1. Species and accessions of grain amaranth used in this study and their passport data.

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession Number</th>
<th>Accession code</th>
<th>Origin</th>
<th>Plant name</th>
<th>Seed colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthus caudatus</td>
<td>1</td>
<td>PI 490458</td>
<td>Bolivia</td>
<td>LSK 38</td>
<td>Cream+black</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>PI 511679</td>
<td>Argentina</td>
<td>RRC 551</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PI 553073</td>
<td>United States, New Jersey</td>
<td>LOVE-LIES-BLESSING</td>
<td>Pink</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PI 642741</td>
<td>Bolivia</td>
<td>Oscar Blanco</td>
<td>Cream</td>
</tr>
<tr>
<td>Amaranthus cruentus</td>
<td>5</td>
<td>PI 477913</td>
<td>Mexico</td>
<td>RRC 1011</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PI 511719</td>
<td>Guatemala</td>
<td>Niqua, alegria, chang</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PI 515959</td>
<td>United states, Montana</td>
<td>Montana-3</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>PI 538319</td>
<td>United states, Pennsylvania</td>
<td>K266</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>PI 590992</td>
<td>China</td>
<td>TIBET</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>PI 604666</td>
<td>United states, Pennsylvania</td>
<td>RRC 1027</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>PI 641047</td>
<td>Nigeria, Oyo</td>
<td>CEN/IB/97/AMA008</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>PI 641045</td>
<td>Nigeria, Oyo</td>
<td>CEN/IB/97/AMA005</td>
<td>Cream</td>
</tr>
<tr>
<td>Amaranthus hybrid</td>
<td>13</td>
<td>PI 538325</td>
<td>United states, Pennsylvania</td>
<td>K593</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>PI 538326</td>
<td>United States, Pennsylvania</td>
<td>D70-1</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>PI 538327</td>
<td>United States, Pennsylvania</td>
<td>DI36-1</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Ames 1974</td>
<td>Nigeria</td>
<td>RRC 18C</td>
<td>Normal green, with pink veins and margin</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Ames 2256</td>
<td>Nigeria</td>
<td>SP 12C</td>
<td>Normal green, with pink veins and margin</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Ames 5644</td>
<td>Nigeria</td>
<td>RRC 1044</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Ames 5647</td>
<td>Nigeria</td>
<td>RRC 1047</td>
<td>Normal green, with pink veins and margin</td>
</tr>
<tr>
<td>Amaranthus hypochondriacus</td>
<td>20</td>
<td>PI 337611</td>
<td>Uganda</td>
<td>P 373</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>PI 511731</td>
<td>Mexico</td>
<td>RRC 646</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>PI 558499</td>
<td>United States, Nebraska</td>
<td>PLAINSMAN</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>PI 590991</td>
<td>China, Shanxi</td>
<td>ZHEN PING</td>
<td>Gold</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>PI 615696</td>
<td>India, Himachal Pradesh</td>
<td>Amapurna</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>PI 619250</td>
<td>United States, Pennsylvania</td>
<td>K 116</td>
<td>Gold</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>PI 633596</td>
<td>Nepal</td>
<td>Jumla</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Ames 1972</td>
<td>Nigeria</td>
<td>RRC 18A</td>
<td>Cream</td>
</tr>
<tr>
<td>Amaranthus hybridus</td>
<td>28</td>
<td>NH 84/444-4</td>
<td>Nigeria</td>
<td>NH Purple</td>
<td>Cream</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>NAC 3</td>
<td>Nigeria</td>
<td>NH Green</td>
<td>Cream</td>
</tr>
</tbody>
</table>

Table 2. Proximate Composition of five grain Amaranth species (g/100g)
Data are presented as mean ± Standard error of mean
Values in the same column having the same letter are not significantly different at P < 0.05.

Table 3. Mineral Content (mg/kg) of five grain Amaranth species

<table>
<thead>
<tr>
<th>Species</th>
<th>Fe</th>
<th>Zn</th>
<th>Ca</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. cruentus</td>
<td>144.14 ± 0.27</td>
<td>43.10 ± 0.39</td>
<td>4.14 ± 0.10</td>
<td>8.95 ± 0.14</td>
<td>63.55 ± 0.66</td>
<td>537.57 ± 62.50</td>
<td>5765.64 ± 65.56</td>
</tr>
<tr>
<td>A. cruentus</td>
<td>117.93 ± 0.39</td>
<td>59.49 ± 1.46</td>
<td>6.62 ± 0.12</td>
<td>11.39 ± 0.12</td>
<td>137.94 ± 0.46</td>
<td>4281.06 ± 17.32</td>
<td>4816.77 ± 17.32</td>
</tr>
<tr>
<td>A. hybridus</td>
<td>102.04 ± 0.40</td>
<td>47.19 ± 0.46</td>
<td>4.68 ± 0.20</td>
<td>2.57 ± 0.18</td>
<td>87.83 ± 0.10</td>
<td>4742.75 ± 28.43</td>
<td>5383.15 ± 34.28</td>
</tr>
<tr>
<td>A. hypochondroceus</td>
<td>148.71 ± 0.29</td>
<td>46.02 ± 0.48</td>
<td>3.37 ± 0.20</td>
<td>0.97 ± 0.03</td>
<td>190.84 ± 0.12</td>
<td>5562.34 ± 30.19</td>
<td>5381.46 ± 18.31</td>
</tr>
<tr>
<td>A. invenusta</td>
<td>145.94 ± 0.74</td>
<td>42.20 ± 0.45</td>
<td>5.00 ± 0.02</td>
<td>ND</td>
<td>ND</td>
<td>5172.61 ± 28.29</td>
<td>4817.94 ± 3.03</td>
</tr>
<tr>
<td>A. hybridus</td>
<td>149.71 ± 0.94</td>
<td>49.49 ± 0.62</td>
<td>6.62 ± 0.05</td>
<td>8.95 ± 0.05</td>
<td>126.44 ± 0.37</td>
<td>5362.34 ± 58.64</td>
<td>1620.43 ± 3.22</td>
</tr>
<tr>
<td>A. invenusta</td>
<td>107.04 ± 3.27</td>
<td>54.55 ± 2.08</td>
<td>6.31 ± 0.05</td>
<td>ND</td>
<td>ND</td>
<td>4281.06 ± 24.17</td>
<td>4817.94 ± 3.03</td>
</tr>
</tbody>
</table>

Data are presented as mean ± Standard Error
Values in the same column having the same letter are not significantly different at P < 0.05.
ND = Not detected