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Abstract: An iterative soft-input soft-output (SISO) improved complex sphere detection and decoder algorithm is 

proposed for signal detection in Turbo-MIMO system. It forms candidate points set Θ in terms of an accumulated cost 

function based on a search arc constrained by the received signals. Then, the candidate points subset, the lower cost 

bound of which is not smaller than upper bound, is fathomed and dropped from further consideration. Meanwhile, 

once a new feasible candidate point is turned up, the path closest to completion is casted upon to generate the set Θ 

with optimal candidate vectors, aiming to determining the extrinsic information for a Turbo coded bit with most 

likelihood. Bridged by de-multiplexing and multiplexing, an SISO improved complex sphere detection is 

concatenated with a SISO Log maximum a posteriori Turbo decoder as if a principal Turbo detection is embedded 

with a subordinate Turbo decoder, exchanging each other’s detection and decoding soft-decision information 

iteratively. As a result, the proposed algorithm converges rapidly, which results in lower computational complexity. 

The transfer curves that relate the input mutual information to the output mutual information is achieved through 

simulations. Thus, an asymptotic interval of the input SNR threshold for the proposed scheme to converge has been 

observed. Finally, an upper bound of the diversity has been obtained based on the intuitional deduction and theoretical 

analyses. The simulation results also show that the proposed scheme has a strong ability of anti-multi-stream 

interference, and its performance is close to that of the iterative soft-input soft-output list complex sphere detection 

and decoder algorithm, but with a shorter time delay. 

 

Index Terms: Turbo-MIMO System, Soft-Input Soft-Output, Iterative Detection and Decoder, Improved Complex 

Sphere Decoder, Transfer Curve 

 

I. INTRODUCTION 

The multiple-input multiple-output (MIMO) systems 

achieve high-data-rate transmission and substantial 

gains in channel capacity over a rich-scattering 

environment [1-2], which makes very high spectral 

efficiency available for the emerging wireless 

standard IEEE 802.11n/ac [3], etc. Moreover, if the 

architecture can combine with the traditional channel 

coding techniques, it would not only increase the 

system’s reliability but also acquire the coding gaining 

to improve the system’s performance [4]. 

 

Therefore, to obtain a channel capacity close to the 

Shannon limit, a new kind of MIMO system, known 

as the Turbo-MIMO system that is based on 

bit-interleaved coded modulation, was investigated by 

Sellathurai and Haykin[5]. Endowed with turbo 

learning principle[6], these iterative receivers make 

detection and decoding by exchanging soft bits 

information mutually, which lets them approach 

approximately optimal performance with in a 

computationally feasible manner [5][7-11].  

 

The efficiency of the Turbo-MIMO systems would be 

evaluated by three aspects [6]: (i) whether it achieves 

the maximum possible diversity order; (ii) whether it 

obtains spatial multiplexing approaching the total 

number of degrees of freedom provided by the 

channel; and (iii) whether the receiver could exploit 

the detector (inner decoder) with both good 

http://www.ijsciences.com/pub/issue/2019-01/


 

 
An Iterative SISO Improved Complex Sphere Detection and Decoder for Turbo-MIMO Systems 

 

 

 

http://www.ijSciences.com                   Volume 8 – January 2019 (01) 

 

 

 

61 

performance and a reduced complexity. 

 

Although the maximum a posteriori probability 

(MAP) inner decoder could obtain the superior 

performance, it has a complexity that grows 

exponentially with the product of the number of 

transmit antennas and the modulation order, which, in 

reality, precludes it from implementing.  

 

On the other hand, the potential performance 

degradation is essential to most of iterative receivers 

that choose minimum mean square error (MMSE) 

based algorithm [9-11] for its inner decoder, which 

makes the extrinsic information transferred to the 

decoder (outer decoder) less reliable. This in turn lets 

designing near-optimal inner decoders with more 

reliable extrinsic estimates [6], an open research topic 

to deal with this problem, be attracted the most 

attention. 

 

Taking into account the characteristic of the extrinsic 

information estimates, almost all of the soft-input 

soft-output (SISO) receivers based on sphere decoder 

[12-14] can achieve full diversity [15]. However, a few 

of them give attention to three all. Among them is the 

list complex sphere decoder (LCSPD) [12] that stems 

from the ideas of a constrained sphere with the given 

radius, centered around the vector of actually received 

noisy signals. It is a small radius that is accompanied 

with a few candidate vectors subset of the entire set of 

possibly transmitted signal points, with 

ever-improving quality in terms of the extrinsic 

information estimates, would lead LCSPD to be a 

computationally efficient method. However, only a 

sphere of relatively large radius and list size would 

ensure the LCSPD to provide near-optimal detection, 

which results it with an unobviously reduced 

complexity comparable to that of the MAP detection 

algorithm.  

 

With recent advances in sphere decoders, more and 

more novel achievements, such as approximate 

Schnorr–Euchner enumeration[16], retaining the best 

K nodes [17-18], variation of fixed-complexity[19], 

single tree-search [20], imposing the norm constraint 

on the admissible solution [21], an adaptive 

tree-travel control scheme combined with a 

reliability-dependent log-likelihood ratio correction 

and an iteration-based hybrid node enumeration [22], 

differential sphere detection accompanied by visiting 

the MPSK constellation points in a zigzag fashion 

[23], etc., in this area have been applied to modify 

search strategies for this kind of suboptimum 

detectors. 

 

Previously, it was shown that when the improved 

complex sphere decoding (ICSPD) [24] found a 

candidate solution for the entire vectors, it resumed 

with the path that was closest to completion in the 

next search, rather than restarting the search from the 

root node. In this way, compared with the LCSPD [12], 

it has a lower complexity than that of the LCSPD [25]. 

Therefore, we extend the idea of list version to ICSPD 

and propose an iterative soft-input soft-output 

improved complex sphere detection and decoder 

(ISISOICSPDD) to form a novelty Turbo-MIMO 

system.  

 

At first, based on the branch and bound tree, an 

acyclic graph, the SISO ICSPD progressively finerly 

partitions off the solution space spanned by signal 

points a collection of subsets with all possible 

transmitted signal points as its root node and each 

transmitted signal point as a terminal node.  

 

Then, it calculates the accumulated cost of every 

nonterminal node and decides the path that connects 

the root and a terminal node to constitute a feasible 

candidate signal point according to a “smallest-first” 

such that it saves computation by pruning the 

nodes/subsets of the tree with no chance of containing 

any feasible candidate signal point.  

Thereafter, if the accumulated cost of a candidate 

signal point is smaller than a prescribed value, it 

means that it obtains a newly feasible candidate point 

for the transmitted signal, which will be put in the 

candidate points set Θ on condition that the Θ does not 

contain all that is possible. Under other circumstances, 

this new point should be drawn comparisons with the 

point in the Θ with the largest accumulated cost and 

the latter would be taken the place of if the former has 

a smaller accumulated cost, which guarantees the 

candidate points in the Θ reliable enough to make the 

SISO ICSPD bring about the extrinsic information 

estimates with high fidelity.  

 

Finally, the proposed iterative SISO detection and 

decoding architecture exchanges each other’s 

soft-decision information between detector and 

decoder, which makes shorten the detection time and 

lower the complexity. 

 

Furthermore, based on density evolution [26], 

Gaussian approximation [27], geometric 

interpretation [28], and visualization method [29], a 

large amount of techniques could be discovered to 

develop schemes for discussing the convergence 

behavior of sub-optimal iterative turbo decoders. 

Little has been attributed to deal with analyzing the 

dynamical statistical characteristic evolution of the 

iterative detection and decoder.  

 

In this paper, we extend the ideas in [27] [29] to our 

simulation in such a way that we observe that the 

histograms of the conditional probability density 

functions of the output extrinsic information of the 
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proposed scheme could be interpreted to a 

approximate Gaussian distribution. Moreover, since 

the measured bit error rate (BER) of the proposed 

scheme could be associated with the output extrinsic 

information’s measured signal-to-noise ratio (SNR) 

by Q function [30], the dynamical convergence 

characteristic, which exhibits three different phases, 

could be explained as follows. 

Firstly, in the relatively lower input SNR interval, the 

output extrinsic information’s SNR almost does not 

fluctuate as the proposed scheme exchanges each 

other’s soft-decision information between detector 

and decoder. 

 

Secondly, with the increase in input SNR, the output 

extrinsic information’s SNR becomes larger and 

larger, but it is bounded away from infinite as 

iterations of the proposed scheme are carried out.  

 

Thirdly, at a certain input SNR, or more accuracy, an 

input SNR threshold, the output extrinsic 

information’s SNR approaches infinite when the 

number of iterations goes to infinity.  

 

However, since transfer characteristics based on the 

distributions of the input/output extrinsic 

information’s SNR lie with the complex signal 

constellation, mutual information transfer 

characteristics are verified to be very robust, ascribed 

to the entropy characteristic inherent in [31] [29]. 

Thus, by simulation, we find that the input SNR 

threshold for the proposed algorithm to converge 

could be limited by an asymptotic interval ascertained 

by the transfer curves which connect the input mutual 

information to the output mutual information.  

 

At the end of this paper, a more important result, i.e. 

an upper bound of the diversity, is extrapolated relied 

on simulation, which is verified in terms of theoretical 

analyses. 

 

Throughout this paper we adopt the following 

notational conventions. Boldface capitals and 

lower-case letters symbolize matrices and vectors, 

respectively. Furthermore, ( )T, ( )H, ( )* and ( )-1 

represent the transpose, Hermitian transpose, 

complex conjugation and inverse respectively. Finally, 

indexes [m, l], [m, l]-1 and [m, l]+1 are used to mean 

the l th bit position of the constellation symbol for the 

m th transmit antenna, the preceding and the posterior, 

respectively.  

 

The rest of the paper is organized as follows. Section 

II describes Turbo-MIMO system model with an 

iterative SISO detection concatenated with SISO Log 

MAP Turbo decoder. In section III, the ISISOICSPDD 

algorithm is proposed. In section IV, the BER 

performance of the proposed algorithm is simulated 

via computer and an asymptotic interval for an input 

SNR threshold has been achieved through simulations, 

which is analyzed according to the transfer curves. 

This is followed by discussion of the diversity order of 

the proposed scheme. Finally, section V concludes the 

whole paper. 
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Fig. 1.  The configuration of Turbo-MIMO system with receiver based on iterative SISO ICSPD detection and 

decoder.  

II. SYSTEM MODEL 

Figure 1 presents the configuration of a Turbo-MIMO 

system with receiver based on an iterative SISO ICSPD 

detection concatenated with SISO Log MAP Turbo 

decoder. In this system, there are Nt transmit antennas 

and Nr receive antennas. Let Mb be the number of 

symbols in the complex constellation C. The user’s 

information bits u are first encoded into the Turbo code 

stream by the outer encoder, which is then bit-interleaved 

using an offline designed pseudo-random interleaver 

referred to as Π. Followed by de-multiplexing, the 

high-speed Turbo code stream transfers into low-speed 

Nt parallel sub-vectors  TT

N

T

m

T

t
dddd ,,,,1  . In the 
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end, each sub-vector  TM

m

l

mmm
bddd ,,,,1 d

1 is 

independently mapped into the transmitted vector 

constellation symbol x whose entries 

 TNm t
xxx ,,,,1   are chosen from C, where mx  is a 

symbol transmitted out of the m th transmit antenna at 

the i th interval. The received Nr×1 vector can be 

represented by 

nHxY                          (1) 

where H denotes Nr×Nt channel matrix, the elements of 

which are independent and identically distributed (i.i.d.) 

with the zero-mean unit-variance complex Gaussian 

distribution, n is a Nr×1 complex white Gaussian noise 

with zero mean and covariance I
22 , where I is an 

Nr×Nr identity matrix.  

 

In order to obtain the most likely information vector, we 

apply the statistic features among all components of 

received signals. By doing that, the multi-stream 

interference from other transmit antennas is mitigated, 

and different kinds of detectors are also acquired. 

 

The MAP algorithm selects the most likely encoded bit 

with respect to all combination of transmitted signals by 

maximizing the log-likelihood ratio (LLR) [32] as given 

by 
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where )1( l

mdX  is the set of all possible Turbo coded 

bit vectors, the l th bit position of the constellation 

symbol for the m th transmit anten na of which is fixed 

with 1l

md . 

The Log MAP algorithm must calculate ΓNt2 , where  is 

the code constraint length sequence corresponding to a 

sequence of modulated symbols to transmitted during the 

i th interval, metrics expressed in Eq. (2) and select the 

vector that yields the largest metric. It is a considerably 

complicated NP-complete problem when Nt is large. 

Although the BER of it is considerably low, its 

computational complexity is unacceptable in reality. To 

reduce the computational complexity, an alternative 

approach is adopted. By employing the complex sphere 

decoder technique, the LCSPD searches vectors that are 

composed of the constellation points limited in a sphere 

of radius C centered at the received signal. This 

approach aims to implement the suboptimum detection, 

 
1
 Here, 

l
md , being mapped into the l th bit position of the constellation 

symbol for the m th transmit antenna, is a Turbo coded bit that may be a 

systematic information bit ss l
m

l
m ud  , where sl

mu  indicates a information 

bit, or a parity bit pl

md  and m=1, 2, , Nt at the i th interval (where, for 

simplicity, we drop the time slot index.). 

with its complexity depending on the size of candidate 

vector set to be searched for detecting per information bit. 

However, it is still a rather complicated NP-complete 

problem when the size of candidate vector set is large 

since it should restart the search from the root node 

repeatedly. It is to further devise the suboptimum SISO 

sphere decoders, which based on the LLR function, have 

both lower computational complexities and fast 

convergence rates that serves as a motivation to write 

this paper. 

III. NOVEL ITERATIVE SISO DETECTION AND DECODER 

ALGORITHM 

The proposed scheme, named as iterative SISO 

improved complex sphere detection and decoder 

algorithm, for Turbo-MIMO system is depicted at the 

right hand of the Figure1. It is composed of an iterative 

SISO ICSPD detector (inner decoder) and SISO log 

MAP Turbo-decoder (outer decoder), which mitigates 

the multi-stream interference and obtains the desired 

information bit by exchanging information between 

inner and outer decoder. 

A. Iterative SISO ICSPD detector (inner decoder) 

The iterative SISO ICSPD, based on a progressively 

f i n e r  
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Fig. 2.  The outline of SISO ICSPD. 

partition of a candidate vectors/points set, gives rise to an 

acyclic graph known as the branch-and-bound tree, the 

nodes of which constitute a collection of subsets of the 

candidate points set. Its crucial idea is to save 

computation by discarding the nodes/subsets of the tree 

that have no chance of containing an optimal candidate 

point. The outline of SISO ICSPD is represented in 

Figure 2. When it is applied to detect multi-transmit 

antennas signals, its novelties can be stated as follows. 

 

1) Forming candidate points set: 

Firstly, the sufficient statistics is obtained to select the 

most likely information bit born in transmitted signals. 

This can be expressed by[24] 

vFby ~                                   (3) 

where HYPHFy
HH -1)(~  where P is a permutation 

matrix and THH
HPPHFF  where F is a lower 

triangular matrix,   Pxb 
T

Nk t
bbb ,,,,1  , 

nPHFv
HH 1)(   is a complex white Gaussian noise 

with zero mean and covariance. 

 

Secondly, all candidates (or the finite feasible set with all 

feasible solutions) bk, cand for bk, which were prescribed a 

collect of constellation points on a same concentric ring 

in a sphere of the initial radius C0 centered at the 

received signal, are determined by 
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where )/ˆ~(
1
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k

j kkjkjkk FbFy  and kjF  is the (k, j) th 

item of F,  jb̂ is the estimation of jb , and 
kbarc is 

defined by the angle range 

)](cos),(cos[ 11  

 
kk

                   (5) 

where 
k is the phase angle of ψk. Here, it is assumed 

that   )(cos0 1
. 

2) Branch-and-bound exploiting an optimal feasible 

candidate set: 

The SISO ICSPD initializes a node list called k of 

candidates for bk transmitted from the k th antenna, and a 

scalar C0, which is equal to the minimal accumulated 

cost over feasible vector  TNk t
bbb ˆ,,ˆ,,ˆˆ

1 b for b 

found so far. With the set bk, cand as its root node, the 

algorithm calculates 
2

, candkk beδ                      (6) 

where e is a vector, each item of which is 1, with the 

same length of candk ,b . 

Subsequently, with the aid of sorting  and candk ,b  in 

increasing order, it successively finds the lower bound of 
2

k  and a feasible candidate )1(, candkb for k. Then, it 

removes the subset with )1(, candkb and  (1) from k. If 

the accumulated cost 





tN

k

k

1

2
                         (7) 

of candidate vector b̂ for b is smaller than C0, it means 

that the algorithm explores a newly feasible candidate 

vector for b, which will be placed in the set Θ as long as 

the Θ is not filled with Ncand feasible candidate vectors. 

Otherwise, this new vector is compared with the vector 

in the Θ with the largest accumulated cost and the latter 

will be replaced if the former has the smaller 

accumulated cost. Moreover, the best candidate vectors 

in the Θ found so far are optimal. 

 

However, it should note that if the number of elements in 

the Θ, or equivalently expressed by |Θ|, is smaller than 

Ncand corresponding to the current radius, the algorithm 

will extend the current radius 1.2 times and restart the 

search. 

3) Educing the global optimal extrinsic information 

for outer decoder: 

 

Hereafter, based on the prior information, the global 

optimal extrinsic information for a Turbo coded bit will 

be maximized by 
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  (8) 

where x=P
-1
b, Θ is a candidate vectors set stated above, 

1

],[



lm
X  and 

1

],[



lm
X  are the sets of  

1
2

bt MN
 possible 

symbol vectors that have bit 1l

md and 1l

md  

respectively, 
],[ lm

d denotes the subvector of d obtained 

by excluding its [m, l] th element 
l

md . Acquired in the 

same way as 
],[ lm

d , 
],[ lm

aλ  is the subvector of aλ  which 

is the vector composed of a posteriori probability (APP) 

LLR of the extrinsic information of the outer decoder’s 

Decoder 2 except for the first iteration when that one 

consists of the priori LLR values for all information bits 

 

Finally, followed by de-interleaving, the extrinsic 

information )( l

me d is fed into outer decoder as a priori 

information. 

B  SISO Log MAP Turbo decoder (outer decoder) 

The extrinsic information got from inner decoder after 

de-interleaving is inputted into the outer decoder that is 
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made up of a pair of component decoders, which are 

separated by a interleaver and a deinterleaver referred to 

as α and α-1  respectively. The configuration of the outer 

decoder, characterized by feedback structure and the APP 

LLR of the extrinsic information exchanging among 

different components in an iterative way, is depicted in 

Figure 3. In Figure 3, ],[ lmz , estimated by the outer 

decoder, connotes the received branch multiplexed soft 

output vector, associated with the [m, l] th transmitted 

branch code vector ],[ lmd , and the index [m, lp] is utilized 

to express the item corresponding to the [m, lp] th soft 

parity bit. The working principle of out decoder can be 

stated as follows.

CL
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Fig. 3.  Internal structure of Turbo decoder. 

1) Generating extrinsic information for Decoder 2: 

Once the soft bit stream coming from inner decoder is 

de-multiplexed to get the soft systematic bits stream and 

soft parity bits streams, the APP LLR of an extrinsic 

information for systematic bit sl

md , i.e. sl

mu , of Decoder 

1 in the q iteration is defined as 

],[ˆ],[],[ 21],[11 s

q

e
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q
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       (9) 

where Lc is called the reliability value of the channel, 
q

lm s
z 1],[
ˆ denotes the received de-multiplexed soft output 

of Decoder 1, associated with the information bit sl

mu , 

estimated by the outer decoder, ],[2 s

q

e lm  is the [m, ls] 

th APP LLR extrinsic information of Decoder 2, which 

is equal to ],[ sa lm , a priori LLR value for [m, ls] th 

information bit, at the first iteration, ],[1 s

q lm is the 

APP LLR associated with the information bit sl

mu  in the 

q th iteration, expressed by 

 

 )(),()(max

)(),()(max],[

*

],[

*

],[

*

1],[
),(

*

*

],[

*

],[

*

1],[
),(

*

1

],[

],[

ssss

sssslm

sss

slm

sss

slm

lmlmlm
ss

lmlmlm
ss

s

q


















 

(10) 

where max* is the equation to simplify the sum of 

exponent items, expressed by 
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Additionally,  ],[ slm and  ],[ slm denote the set of the pair 

of state ss
slm

],[  and ss
slm 1],[   corresponding to 

theinformation bit 1j

kd  and 1j

kd , respectively. 

Moreover, )(*

],[ s
slm

 , )(*

1],[ s
slm   and ),(*

],[ ss
slm

  are 

log-domain forward, backward and branch metrics, 

obtained by the following  log-domain forward, 

backward and branch recursion, respectively, written by 
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  (12) 

where ],[ slm  is the set of all state associated with the [m, 

ls] th information bit, accompanied with [m, ls]=0, 1, , 

L-1, where L is the total length of information bits and 

tail-end information bits. 
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where  [m, ls]=L-1, L-2, , 0, 1. 
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4) 

where h is length of information bits, q

lm s ],[ẑ  means the 

received branch de-multiplexed one of ],[ slmz . 

2) Engendering extrinsic information and making hard 

decision: 

Meanwhile, Decoder 1 will use the ],[2 s

q

e lm  in place 

of ],[ sa lm  after the first iteration, which in turn 

computed by Decoder 2 is 

],[ˆ],[],[ 12],[22 s

q

e

q

lmcs

q

s

q

e lmzLlmlm
s

             (15) 

where q

lm s
z 2],[
ˆ , estimated by the outer decoder, denotes 

the received de-multiplexed soft output of Decoder 2, 

associated with the [m, ls] th information bit, ],[2 s

q lm  

is the APP LLR associated with the [m, ls] th 

information bit in the q th iteration, which can be 

defined in the manner similar to Eq. (10)-Eq. (14). The 

iterative process is usually terminated after a 

predetermined number of iterations, when the 

soft-output value stabilizes and changes little between 

successive iterations. 

 

Furthermore, the Eq.(9)-Eq.(15) can be relatively 

straightforwardly generalized to analyze and discuss the 

soft parity bits streams. Then, we multiplex soft 

systematic bits stream and soft parity bits streams in the 

same way as that in Turbo encoding to get the encoded 

bits’ extrinsic information which is sent to the next 

iteration as a priori LLR of the iterative SISO ICSPD 

detector.  

 

With the increasing number of iteration, the 

contribution of extrinsic information from the inner and 

outer decoder to the improvement of performance of the 

receiver diminishes. Finally, the avail vanishes, that is 

to say the receiver converges. At this time, Decoder 2 

will not only combine both extrinsic information values 

in computing the soft-output ],[2 s

q lm  but also make 

hard decision after de-multiplexing to obtain the 

estimation sl

mû of the information bit. 

IV. SIMULATION RESULTS AND DISCUSSION 

In this section, a simulation investigation is carried out 

to show the performance of the proposed scheme in this 

context. We use two receive schemes, i.e. 

ISISOICSPDD and iterative SISO list complex sphere 

detection and decoder (ISISOLCSPDD). The 

simulation results are described in three aspects, i.e., the 

performance of ISISOICSPDD over a number of 

iterations in the detector/decoder loop (outer iteration), 

the transfer curve of the proposed scheme and the bit 

error rate (BER), which is followed by discussion of the 

diversity order of the proposed scheme.   

 

Let us consider that, in a Rayleigh fading channel, there 

is a Turbo MIMO system, shared by Nt transmitters and 

Nr receivers. The transmitters employ the 

quadrature-shift keying modulation (QPSK) and 16-ary 

quadrature amplitude modulation (16-QAM) and 

64-QAM with Gray mapping. A rate R=1/2 parallel 

concatenated outer channel Turbo code [35] sequence of 

memory 2 with (recursive) feedback polynomial 

Gr=1+D+D2 and feedforward polynomial G=1+D2 is 

used.  

 

In Figure 3, the pseudo-random interleaver (α) is 

employed for the process of rearranging the ordering of 

an information sequence in a one-to-one deterministic 

way before the application of the second component 

code in a turbo coding scheme. In Figure 1 and Figure 3, 

the pseudo-random interleaver (∏) is used not only to 

de-correlate the fading channel and maximize the 

diversity order of the system but also to eliminate the 

correlation in the sequence of Turbo coded bits, which is 

crucial for the proposed algorithm.  

 

The packet length of the information bits to be 

processed is 9216, which is also the interleaver size of 

the turbo code. The number of iterations of the Turbo 

decoder (inner iteration) is limited to 8. Moreover, for 

the iterative SISO ICSPD detector, the maximal lengths, 

being Ncand = 512 for 8  Nt Mb  32 and Ncand =1024 for 

32  Nt Mb  48, of the candidate set are adopted, 

respectively. As to the SISO Log MAP Turbo decoder, 

the hypotheses per detected bit to be searched for Nt Mb 

 8 are bt MN
2 . 

A. The performance of ISISOICSPDD over a number 

of iterations in the detector/decoder loop 

Figure 4 and Figure 5 depict the BERs of the 

ISISOICSPDD versus SNR values over a range of 

iterations, with the transmitters using the 16-QAM for 

Nt=Nr=4, and the QPSK for Nt=Nr=8, respectively. 
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For the graphic clarification, not all of simulation 

results are shown and the number of the iteration being 

one means that there is no soft information exchanging 

between iterative SISO ICSPD detector and SISO Log 

MAP Turbo decoder. From Figure 4 and Figure 5, we 

can obtain the following observation. 

 

Originally, in the relatively lower input SNR interval, 

the BER of the proposed algorithm is almost not 

favorable to the numbers of detection and decoder 

iterations being executed.  

 

Gradually, with the increase in input SNR, the BERs 

between successive iterations could be distinguished. 

Then, at a certain input SNR, or more accuracy, an 

input SNR threshold, the BER curves go into waterfall 

region with their characteristic sharp drop, where the 

proposed algorithm would converge to zero BER within 

a finite number of iterations. 

 

Figure 4 and Figure 5 have also shown that though the 

more number of iteration would lead to the lower bit 

error rate, the BER of the proposed algorithm does not 

obviously decrease when the iteration size is increased 

from 1 to 4, while the gap between 4 and 5 is widening. 

Henceforth, we fix iterations to 5 as a fundamental 

tradeoff between BER and computation complexity of 

the proposed algorithm in all our following simulations.  

B. The transfer curve of ISISOICSPDD 

Meanwhile, simulations have shown that the 

histograms of the conditional probability density 

functions )|(],[
s

sa

l

mlm dP  of ],[ sa lm and 

)|(
],[2

s

s
q

l

mlm
dP 


of ],[2 s

q lm , detail analyses of which 

have been beyond the scope of this paper, could be 

approximated by a Gaussian density function, which are 

consistent with the results in [27]. Therefore, the input 

SNR threshold for the proposed algorithm to converge 

could be bounded by an asymptotic interval determined 

by the transfer curves in Figure 6 and Figure 7 which 

relates the input mutual information ]),[,( sa

l

ma lmdI s  , 

expressed by [32] 
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Fig. 4.  The BERs of the ISISOICSPDD versus SNR values                             Fig. 5.  The BERs of the 

ISISOICSPDD versus SNR values       

over a range of iterations, with the 16-QAM and Nt=Nr=4.                               over a range of iterations, with 

the QPSK and Nt=Nr=8. 
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Fig. 6.  The ISISOICSPDD input-output transfer curves                                  Fig. 7.   The ISISOICSPDD 

input-output transfer curves 

                     with the 16-QAM, Nt=Nr=4.                                                                             with the QPSK, Nt=Nr=8. 
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Fig. 8.  The BERs of the ISISOICSPDD (solid line) and ISISOLCSPDD        Fig. 9.  The BERs of the ISISOICSPDD 

(solid line) and ISISOLCSPDD 

    (dashed line) versus SNR values with Nt=Nr=4.                                               (dashed line) versus SNR values with 

Nt=Nr=8. 
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(16) 

to the output mutual information ]),[,( 2 s

ql

me lmdI s  , the 

expression of which is similar to Eq. (16). 

 

Two sets of transfer curve shown in Figure 6 and Figure 

7 for different values of the input SNR are distinguished 

by a straight line ]),[,( 2 s

ql

me lmdI s  = ]),[,( sa

l

ma lmdI s  .  

From Figure 6, we can find that when input SNR values 

are  6.0, 5.0 dB, the output mutual information would 

not reach the maximum value one no matter how many 

numbers of iteration the proposed algorithm are carried 

out. This phenomenon discovers the nature of 

relationship between the BER and the numbers of 

iteration when the input SNR is selected a lower and 

median value. 

 

Moreover, These transfer curves pass beneath the 

straight line characterized by Ie=Ia. This means that at 

these iterations, the output ]),[,( 2 s

ql

me lmdI s   is lower 

the input ]),[,( sa

l

ma lmdI s   for the ISISOICSPDD, 
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which in turn leads the ISISOICSPDD to obtain less 

reliable extrinsic estimates such that the estimate 

codeword of the ISISOICSPDD would deviate from 

what is correct with high probability.  

 

On the other hand, when input SNR values being 7.6, 

7.0 dB, the transfer curves lie above the straight line, 

which makes the ISISOICSPDD, with ever more 

reliable extrinsic estimates, converge to a reliable 

solution. Thus, the asymptotic interval for input SNR 

threshold of the ISISOICSPDD with the 16-QAM and 

Nt=Nr=4 is bounded within the interval of [6.0, 7.0] dB. 

In the same way, we can determine that the asymptotic 

interval for input SNR threshold of the ISISOICSPDD 

with the16-QAM and Nt=Nr=8 is within the confines of 

interval [2.6, 2.7] dB. 

C. The bit error rate 

Figure 8 and Figure 9 represent the BERs of 

ISISOICSPDD (solid line) and ISISOLCSPDD (dashed 

line) versus SNR, with Nt=Nr=4 and Nt=Nr=8, 

respectively. 

 

Figure 8 and Figure 9 reveal that the proposed 

algorithm will converge to the approximately global 

optimum after running 5 iterations and be close to 

ISISOLCSPDD. At this time, its computational 

complexity is much lower than that of the 

ISISOLCSPDD [24-25]. This makes its detection delay 

much shorter than that of the latter, the superiority of 

which is especially significant when the number of 

transmit antennas is larger. This is attributed to the 

depth-first branch and bound search strategy merged in 

the proposed algorithm, which leads to its resumes with 

the path that is closest to completion in the next search, 

rather than restarting the search from the root node. 

D. Discussion of the diversity order of the proposed 

scheme 

According to 
)log(

)(log
lim

SNR

SNRP
d e

SNR
gain 


 where Pe is 

the bit error rate [15], we can obtain the diversity gain in 

table 1 of the proposed scheme when it terminated at the 

5th iteration.   

TABLE I  THE DIVERSITY GAIN OF THE PROPOSED 

SCHEME. 

                   

NtNr 

Modulation 

44 88 

QPSK 12.28 11.63 

16-QAM O(4*4

) 

O(8*8) 

64-QAM O(4*4) O(8*8) 

Observed from table 12, we intuitionally deduce that 

there would be a diversity order for the proposed 

scheme. 

In fact, Let  
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be the signal matrix transmitted, with  being the 

frame length. The pair-wise error probability 

)ˆ( XX P of the proposed algorithm is that it decides 
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which is upper bounded by  
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)ˆ(

1

XX (17) 

where i , i=1, 2, , Nt, are nonzero eigenvalues of the 

NtNr matrix   with the element at the pth row and qth 

column expressed by   






1 ,,
ˆ

t tptp xx when the signal 

difference matrix, i.e. the square root of  , is full rank 

over all pairs of distinct signal matrix X and X̂ . The 

Eq. (17) demonstrate that the diversity order of the 

proposed algorithm is Nt  Nr. These conclusions also 

coincide with the results provided by [34] [35] for the 

Turbo MIMO systems.  

V. CONCLUSION 

ISISOICSPDD is proposed for Turbo-BLAST systems. 

The original candidates set, treated as the root of a tree, 

is divided repeatedly into subsets/nodes until no more 

division is possible. For each subset of the tree, the 

proposed algorithm computes a lower bound to the 

optimal cost with Eq.(6) and a feasible candidate vector 

being restricted under Eq.(7), which economizes 

computation by truncating nodes of the tree that cannot 

contain an optimal solution. In this way, the proposed 

scheme shortens the delay of iterations between the 

inner decoder and outer decoder to a certain degree, 

which in turn makes the complexity of the proposed 

algorithm lower. Simulation results show that the 

performance of the proposed algorithm is close to 

ISISOLCSPDD. In addition, Additional performance 

gain is acquired over the traditional method without 

iterative detection. Furthermore, based on the 

 
2
 Since, the BER of the proposed algorithm displayed in our compute, 

perhaps confined by its accuracy, is 0.000000, we use O(Nt*Nr) to 

express a certain value that approches the diversity order Nt  Nr.  
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input-output transfer curve, an asymptotic interval of 

the input SNR threshold for the ISISOICSPDD to 

converge is induced by running a series of simulations 

of the proposed algorithm for a number of fixed input 

SNR values, which is followed by an upper bound of the 

diversity acquired according to the intuitional deduction 

and theoretical analyses. Meanwhile, the technique to 

attain asymptotic interval of the input SNR threshold 

and the diversity order can be relatively 

straightforwardly applied to analyze and discuss all 

kinds of iterative SISO detection and decoder for 

Turbo-MIMO systems. 
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