Research Progress on Exosomes Derived from Human Adipose Mesenchymal Stem Cells

Wang Jing1, Wang Zhiguo2, Cai Xia2, Li Kun3, Hao Rongan1, An Yu1

1Department of Medicine, Qingdao University, Qingdao, Shandong Province, 266021
2Burn and Plastic Surgery Dept, The Affiliated Hospital Of Medical College Qingdao University, Qingdao, Shandong Province, 266021
3Hand and Foot Surgery, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266021

Abstract: Mesenchymal stem cells (MSC) have the potential of multi-directional differentiation, have stable genetic information, can self-replicate and renew, and are commonly used as seed cells in the field of regeneration. Adipose mesenchymal stem cells, bone marrow mesenchymal stem cells and umbilical cord mesenchymal stem cells are the most commonly used mesenchymal stem cells. Compared with other mesenchymal stem cells, adipose mesenchymal stem cells have a wide range of sources, relatively simple acquisition methods and less trauma. Therefore, adipose mesenchymal stem cells have gradually become a new favorite in stem cell research. However, due to the harsh storage conditions and inconvenient transportation of living cells, the survival rate of direct transplantation into living organisms is low, which makes it difficult for clinical application. Exosome is a kind of extracellular secretory vesicle, which exists in almost all body fluids and can be extracted from the supernatant of most cultured cells in vitro. It has the characteristics of secretory cells, simple storage, convenient transportation and low immunogenicity, providing a new direction for the clinical application of adipose mesenchymal stem cells. Therefore, this paper reviews the exosomes derived from adipose mesenchymal stem cells.

Keywords: Adipose-Derived Stem Cells, ADSCs, Mesenchyma Stem Cell, Exosomes

Nomenclature and source of adipose mesenchymal stem cells
In 2001, PA zuk et al. successfully isolated a kind of human adult stem cell similar to bone marrow mesenchymal stem cell in liposuction adipose tissue and named it PLA. In 2002, PA zuk et al. proved that the PLA isolated had the common characteristics of mesenchymal stem cells, that is, it could conduct multidirectional differentiation under certain conditions. Then scholars scrambled to name the adult stem cells from which the fat came. In 2004, the cells derived from adipose tissue that can adhere to the wall and have plastic adhesion and multidirectional differentiation were uniformly named adipose-derived stem cells (ADSCs).

The human body is rich in adipose tissue, which can provide sufficient experimental materials for stem cell research. And with the improvement of living standards, people's obesity index is gradually rising, and the sources of adipose tissue will be more abundant. Adipose tissue can provide more stem cells than other tissues. According to research, the number of stem cells per g of bone tissue is only equal to 1/500 of stem cells per g of adipose tissue. There are many methods to obtain adipose tissue, among which liposuction is the most important method. Kevin et al. found that about 2.5 *10^5 nucleated cells could be obtained per milliliter of adipose tissue after liposuction, and L Aust et al. also confirmed that 4040009 ±206000 ADSCs could be isolated and cultured per milliliter of adipose tissue obtained by liposuction. Other studies have shown that the amount of ADSCs in adipose tissue of different parts and layers is different, and the activity of ADSCs isolated from adipose tissue of different origins and the ability of multi-directional differentiation are also different.

Characteristics of adipose mesenchymal stem cells
Multidisciplinary differentiation of adipose mesenchymal stem cells

Adipose mesenchymal stem cells are derived from the mesoderm and have the ability to differentiate into other mesoderm, that is, the ability of polydifferentiation. ADSCs can be induced and differentiated into cardiomyocytes, endothelial cells, adipocytes, osteoblasts, chondrocytes, neuro-like cells and other...
In 1975, ultrafiltration, density gradient centrifugation, and immunomagnetic bead method were used to extract and name exosomes. In 1967, Johnstone et al. isolated and named exosomes. In 1987, Johnstone et al. identified the smallest extracellular vesicle as exosomes.

Cells can release exosomes. The exosomes can also be separated from urine, plasma, breast milk, saliva, ascites, etc. The exosome is formed by endocytosis. First, the plasma membrane reseals inward to form an endosome body that encapsulates the contents. Then the endosome membrane invades partially. In the endosomal body, many vesicles are formed, called MVBs. Finally, the MVBs are combined with the cell membrane to release the intracellular vesicles to the extracellular space, that is, the exosome.

Extraction and identification of exosomes

Common methods to extract exosomes include differential centrifugation, ultrafiltration, density gradient centrifugation, immunomagnetic bead method, and liquid chromatography, etc. Differential centrifugation is the basis of collecting exosomes and can obtain a large number of exosomes, but it will cause some damage to exosome films due to the large centrifugal force. The most commonly used density gradient method in the laboratory is the sucrose density gradient method, which uses the density distribution of exosomes to deposit exosomes to obtain higher purity exosomes. However, due to more preparation in the early stage and the small amount of exosomes obtained, it is not conducive to a large number of studies. With the development of technology, rapid exosome separation kits also appeared. However, due to great differences among different products, the quality and purity of the separated exosomes could not be guaranteed stably. Meanwhile, PEG may affect the exosomes obtained by using exosome separation kits when observed by transmission electron microscope.

Cell-derived vesicles are cup-shaped in shape. Cup-shaped shape is a useful feature to distinguish cell-derived vesicles from granules of similar size. The diameter of microvesicles, apoptotic bodies, and exosomes is mainly determined by their diameter. The diameter of microvesicles is usually less than 50 nm. The diameter of apoptotic bodies is larger, concentrated in 0.1-0.5 μm. The diameter of exosomes is between 40-100 nm. Radioeletronic microscopy is the only method that can simultaneously measure vesicle size and observe vesicle morphology. It is the gold standard for identifying exosomes. At the same time, there are specific markers on the surface of the exosome membrane, which can also be identified by flow cytometry and Western blot. However, because of the small diameter of exosomes, the general flow cytometry can not detect them. Therefore, after enriching the exosomes by immunomagnetic beads, the exosomes can be identified by flow cytometry.

Characteristics of exosomes

The exosome is the smallest one of the extracellular vesicles. It is uniform in size and has a membrane structure between 40 and 100 nm in diameter. It has a double concave disc shape and a density between 1.13 and 1.19 g/mL. The exosome has a membrane structure,
which is different from the plasma membrane. The exosome membrane has more lipid rafts and proteins, and has its specific surface markers, such as membrane-binding proteins CD9, CD63, CD81, MHCI molecules, heat shock proteins HSP73, HPS90, etc. The exosome contains a variety of microRNAs, proteins, cytokines, lipids, non-coding RNA, and is the basic medium of intercellular information exchange. It plays an important role in long-distance or short-distance cell signaling and material transmission. The exosome has a relatively stable membrane structure, and its concentration is not affected by the degradation process. Exosomes from different cell sources have different properties and have the characteristics of source cells. The quantity and content of exosomes are also changing according to the microenvironment of cells. Stem cell-derived exosomes also have the advantages of high stability, no immune rejection, homing effect, easy control of dose and concentration. Conclusions and Future Directions

Adipose-derived mesenchymal stem cells have a wide range of sources, can be obtained in large quantities by relatively simple methods, have strong self-replication ability in vitro, can be passed on many times, and after many passages, their properties do not change, so they have obvious advantages in clinical application. Exosomes have the characteristics of source cells. They have specific proteins on their surface. They contain microRNAs, proteins, cytokines, lipids and non-coding RNA. They are important structures for intercellular material and information exchange. These three methods can be used to transfer their contents to target cells: (1) directly bind to target cells; (2) interaction between receptors and ligands; (3) endocytosis induced by endocytosis. The exosome membrane is relatively stable and not easy to crack. It can transport its contents to target cells more safely. Therefore, exosomes derived from mesenchymal stem cells can not only inherit the advantages of adipose-derived mesenchymal stem cells, but also have the common characteristics of exosomes, and their clinical value is immeasurable. But how to extract exosomes with high purity stably is the main problem that needs to be solved urgently at present. At the same time, how to screen exosomes containing specific content is another problem that needs to be solved in the future.

Conflict of Interest: The authors declare that they have no conflict of interest.

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

25. van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R., Classification, Functions, and Clinical Relevance of Extracellular Vesicles. PHARMACOL REV 64
Research Progress on Exosomes Derived from Human Adipose Mesenchymal Stem Cells

676 (2012).
35. Machida, T. et al., miR1246 and miR4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. ONCOL REP 36 2375 (2016).
42. Trajkovic, K. et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes. SCIENCE 319 1244 (2008).
46. Tkach, M. & Thery, C., Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. CELL 164 1226 (2016).
51. Lopez-Verrilli, M. A. et al., Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. NEUROSCIENCE 320 129 (2016).

http://www.ijSciences.com Volume 8 – March 2019 (03)