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Abstract: Functor adjunctions are fundamental to category theory and have recently found applications in the 

empirical sciences. In this paper a functor adjunction on a special full subcategory of the category of digraphs is 

borrowed from mathematical biology and used to equate cardinalities of sets of homomorphisms between 

various types of digraphs and associated line digraphs. These equalities are especially useful for regular 

digraphs and are applied to obtain homomorphism set cardinality equalities for the classes of de Bruijn digraphs 

and Kautz digraphs. Such digraphs play important roles in bioinformatics and serve as architectures for 

distributed high performance computing networks.  
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1. Introduction 

Every area of mathematics (e.g., group theory, 

topology) is described by numerous definitions, 

theorems, and constructions. However, many common 

mathematical concepts occur naturally with only 

slight variation in these various areas of mathematics. 

Category theory is that branch of mathematics which 

identifies and studies such common concepts and 

provides formal mechanisms for mapping them from 

one area of mathematics to another. More specifically, 

a category (e.g., the category of sets) consists of a 

class of objects (e.g., sets), morphisms between 

objects (e.g., maps between sets), an identity 

morphism for each object (e.g., the set identity map), 

and a rule for associatively composing morphisms 

(e.g., composition of maps). Functors provide formal 

maps between categories (e.g., from the category of 

groups to the category of sets) by associating objects 

and morphisms in different categories subject to the 

constraints that morphism composition and object 

identities are preserved. 

 

Because of its generality, category theory has found 

application in recent years in such diverse areas as 

physics (e.g., [1-4]), design specification (e.g., [5,6]), 

data fusion (e.g., [7]), computer science (e.g., [8]), 

computer security (e.g., [9,10]), systems engineering 

(e.g., [11]), manufacturing (e.g., [12]), theoretical 

biology (e.g., [13]), and artificial intelligence (e.g., 

[14]). Of special interest here is the recent application 

of category theory by Haruna and Gunji (HG) to 

theoretical biology [15,16]. There two functors are 

defined on a full subcategory of the category of 

digraphs and are shown to form an adjoint pair (i.e., a 

functor adjunction) - an important category theoretic 

concept analogous to that of mutually inverse 

functions. 

 

Although this adjoint pair of functors has important 

consequences for biological systems, the objective of 

this paper is to exploit HG’s functor adjunction for the 

purpose of establishing equalities between the 

cardinalities of homomorphism sets for various types 

of digraphs and associated line digraphs. These 

equalities are especially useful for regular digraphs 

and they are applied to obtain results for the classes of 

de Bruijn digraphs and Kautz digraphs. Both de 

Bruijn and Kautz digraphs play important roles in 

bioinformatics (e.g., [17]) and serve as efficient 

architectures for distributed high performance 

computing networks (e.g., [18]). 

 

To make this paper relatively self-contained, basic 

graph and category theoretic definitions that are used 

in this paper are summarized in the next section and 

results from HG’s research that are relevant to this 

work are presented in section 3. The theory developed 

in section 3 is used in section 4 to establish this 

paper’s main theorems concerning equalities between 
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equipotent digraph homomorphism sets. These main 

results are applied to dicycles, de Bruijn digraphs, and 

Kautz digraphs in section 5. Closing remarks 

comprise the final section of this paper. 

2. Basic Definitions 

A digraph (or directed graph)   is a 4-tuple   
(         ), where   is a set of arcs,   is a set of 

nodes,    is a map that sends each arc to its source 

node, and    is a map that sends each arc to its target 

node. A source (target) node is adjacent to (from) a 

target (source) node and the in-degree (out-degree) 

  ( ) (  ( )) of a node   is the number nodes 

adjacent to (from)  .   is  -regular if    ( )    

  ( ) for each of its nodes. If   is a partition of the 

node set   of   into   non-empty subsets        

         , then   ⁄  is the associated quotient 

digraph of   with node set   and arc set {(    )  

     (   )                  }. The line 

digraph of digraph   (         ) is the digraph 

which has   as its node set and arc set  (   )    

          .  

 

A digraph homomorphism from   (         ) to 

   (        
    

 ) is a pair of maps (     ), where 

        and        , such that      

  
           . The number of injective digraph 

homomorphisms of   into   is    (   ) and an 

endomorphism on   is a digraph homomorphism 

from   to itself.    ( ) is the number of   

endomorphisms and   is said to be rigid when 

   ( )   .       

 

A category   consists of a collection      of objects 

such that: 

(1) for every pair of objects     in      there is a 

(possibly empty) set     (   ) of morphisms 

from   to  ; 

(2) for any       in      there is a composition of 

morphisms  

        (   )      (   )      (   ) 

given by (   )      with the properties: 

a. for every   in      there is an identity morphism 

       (   ) such that for                 

                    (   ) and   

    (   ),                                 and 

      ; and 

b. when defined, composition of morphisms is 

associative, i.e., (   )      (   ). 

 

A morphism       is an isomorphism if there 

exists a morphism       such that        and 

      . A category   is a full subcategory of 

category   if every object of   is an object of  , 

    (   )      (   ) for all objects   and   in 

 , for every object   in   the identity morphism    is 

the same in   as it is in  , and the composite of two 

morphisms in   is the same as their composite in  . 

 

Examples of categories are the category     (where 

       is the collection of all sets, the morphisms are 

the ordinary mappings between sets, and   is the usual 

composition of maps), the category     (where 

       is the collection of all groups, the morphisms 

are the ordinary group homomorphisms, and   is the 

usual composition of group homomorphisms), and the 

category     of digraphs (where        is the 

collection of all digraphs, the morphisms are digraph 

homomorphisms, and   is composition of digraph 

homomorphisms). It is easily verified that    ,    , 

and Dgp satisfy items (1), (2a), and (2b) above. 

 

Functors can be regarded as morphisms between 

categories and - in a sense – they provide a “picture” 

of what one category looks like inside another. If   is 

a covariant functor – or simply a functor 

(contravariant functors are not used here) - from 

category   to category   (denoted      ), then it 

assigns to every   in      an object    in      and 

to every       (   ) an        (     ) 

such that: 

(3)         for every   in     ; and 

(4) when       is defined in  , then       

   is defined in   and        (   )  

  .  

If   is a functor such that      , then   is an 

endofunctor. 

 

Simple examples of functors are the identity functor 

       (which makes the assignments       

for every   in      and       for every   

    (   )) and the forgetful functor           

(which assigns to every group   in        its 

underlying set    in        and to each 

homomorphism         (   ) the set map 

         (     ) - i.e.,   forgets the group 

structure going from     to    ). It can be 

determined by inspection that these functors satisfy 

the required properties given above by items (3) and 

(4). It is also straightforward to see that if       

and       are functors, then their composition 

       is also a functor. 
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Let         be functors. A natural 

transformation from   to   is a morphism       

   in   for every   in   such that if       (   ), 

then            . If    is an isomorphism, 

then    is a natural isomorphism. An adjunction 

between functors       and      , denoted by 

   , is a family of natural isomorphisms 

          (    )      (    ) for all objects   

in   and all objects   in  , denoted by 

    (    )      (    ). 

3. The Endofunctors   and   on Category   and 

Their Adjunction 

The results found in HG’s research that are required 

to provide the main results of this paper are presented 

in this section. However, it should be noted that HG 

omitted in [15,16] explicit proofs that their 

“transformation operators”   and   are endofunctors. 

For the sake of completeness, the proofs that   and   

are endofunctors – along with appropriate 

homomorphism definitions - are developed in this 

section. Also note that for the purpose of mnemonics, 

HG’s  ( ) is the  ( ) used herein.  

 

Fundamental to this note is the category   defined by 

HG which has as its objects digraphs   

(         ) with the property that for every     

there exists       such that           and has 

as its morphisms the associated digraph 

homomorphisms. The following lemma follows 

trivially from the definition of full subcategory and is 

stated without proof. 

Lemma 1.   is a full subcategory of Dgp. 

Let   transform digraph   (         ) into 

another digraph    (        
    

 ) according to 

    (   )              ,     , with 

  
 (   )    and   

 (   )    for (   )    .   

Lemma 2.    is the line digraph of  . 

Proof of Lemma 2. This assertion follows directly 

from the definitions of    and line digraph.     

If    (        
    

 ), then let   (     ) be a 

homomorphism from   to    such that         

and         and define    (       ), where 

           according to 

(   )
   
→  (  ( )   ( )) and         

Lemma 3.    is a digraph homomorphism.  

Proof of Lemma 3. If    is a homomorphism from 

   to    , then      
    

             . 

“Diagram chasing” shows that this is indeed the case: 

for      (   )
   
→  (  ( )   ( ))

  
  

→   ( )
   
←   

  
 

← (   ) and similarly for    .     

Lemma 4.   is an endofunctor on  .   

Proof of Lemma 4. That    is an object in   is 

shown to be true by Proposition 5.7 (iv) in [15]. To 

show that item (3) in section 2 is true for  , let 

     so that    and    are the identity maps     

and    , respectively, in which case   (       )  

  . Then        (         ). Since      and 

     map according to 

(   )
    
→  (   ( )    ( ))  (   ) 

and 

 
    
→     ( )   , 

then 

(         )                                   . It 

follows that        . To show that item (4) in 

section 2 is true for  , let        and          

be digraph homomorphisms. Then – since    and     

compose as maps - the composition  

    (  
      

   )  

        

   
      

   
           

        
    

          
    

     Consequently, 

    is defined in  . Consider the composition      . 

“Diagram chasing” reveals that  

(   )
   
→  (  ( )   ( ))

   
 

→  (  
   ( )   

   ( ))

  
  

→   
   ( )  

   
 

←    ( )
   
←   

  
 

← (   ) 

and similarly for    . Thus,    
      

  

  
     

              which shows that       is 

also defined in  . Now observe that since 

(   )
   
→  (  ( )   ( ))

   
 

→  (  
   ( )   

   ( ))

   
   

←    (   )  

then    
        

     Also, since    
    ( )  

  
   ( )     

     then 

      (   
        

    )  

(   
       

   )      .    

For obvious reasons,   is called here the line graph 

functor on  . 

    Now let   transform   into another digraph 

   (        
    

 ), where         
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  ⁄     (   )                     

  , and   is the equivalence relation generated by the 

relation (   ) (   ) if and only if     or    . 

Denote an   equivalence  class by [(   )] , where 

(   ) is a representative element in the equivalence 

class, and define the source and target maps for 

     as   
   [(       )]  and   

   
[(       )] , where           for      . As 

before let   (     ) be a homomorphism from   

to    and  define    (       ), where     

   and           according to  

[(       )]  [(     )] 
   
→  [(  

      ( ))]
 

 

and 

[(       )]  [(     )] 
   
→  [(  ( )   

   )]
 

. 

Lemma 5.    is a digraph homomorphism. 

Proof of Lemma 5. If    is a homomorphism from 

   to    , then      
    

             . 

“Diagram chasing” shows that this is the case: for 

      
  

 

→ [(     )] 
   
→  [(  

      ( ))]
 

  
  

←    ( )
   
←    and for       

  
 

→ [(     )] 
   
→  [(  ( )   

   )]
 

  
  

←   ( )
   
←    .    

Lemma 6.   is an endofunctor on  .  

Proof of Lemma 6. That    is an object in   when 

  is an object in   is shown to be true by Proposition 

5.7 (iii) in [15]. To show that item (3) in section 2 is 

true for  , let      so that    and    are the 

identity maps     and    , respectively, in which case 

  (       )    .  Then        

(         ). Since       maps as  
   
→     ( )  

  and      maps according to   

[(     )] 
   
→  [(       ( ))]

 
 [(     )]  

and 

[(     )] 
   
→  [(   ( )    )]  [(     )]   

then (         ) is the identity morphism     on 

  . Thus,        . To show that item (4) in 

section 2 is true for  , let        and          

be digraph homomorphisms. Then - since    and    

compose as maps - the composition     
(  

      
   ) implies   

      
   

           

where   
    

    and    
    

   . Consequently, 

    is defined in  . Consider the  composition 

       “Diagram chasing” reveals that 

 
   
→    ( )

   
 

→     
   ( )

  
  

→  [(  
      

   ( ))]
 

   
 

←  [(  
      ( ))]

 
   
←  [(     )] 

  
 

←   

and similarly for    . Thus,    
      

  

  
     

              which shows that       is 

also defined in  . Now observe that since  

 
   
→    ( )

   
 

→     
   ( )

   
   

←        

then    
        

   . Also, since  

[(     )] 
   

    
→      [(  

      
   ( ))]

 
   

   
←     [(     )]   

then 

      (   
        

    )  

(   
       

   )      .    

Lemma 7.      . 

Proof of Lemma 7. This is shown to be true in 

Theorem 5.9 in [15].    

  is called here the digraph return functor on   

since – from Lemma 7 -      , i.e. the action of 

  upon the line graph    of   “returns”   to an 

isomorphic copy    of itself in  . Denote this 

isomorphism by     . 

Lemma 8.    , that is     (    )  

    (    ) for all objects   and   in  . 

Proof of Lemma 8. This is a restatement of Theorem 

5.8 in [15].   □ 

4. Main Results 

The above lemmas lead to the following main results 

which equate the cardinalities of homomorphism sets 

between digraphs, line digraphs, and associated 

quotient digraphs.  

Theorem 9. For any digraphs D and K in    
|    (    )|  |    (    )|. 

Proof of Theorem 9. This result follows directly 

from Lemma 8 because the associated families of 

natural  isomorphisms           (    )  

    (    ) are bijections between the morphism 

sets     (    ) and     (    ). Consequently, 

these morphism sets have the same cardinality.     

Theorem 10. For any objects D and K in    

∑    (   ⁄   )

     

 ∑    (     ⁄ )
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where     and    are the sets of all partitions of the 

   and   node sets, respectively. 

Proof of Theorem 10. Application of Corollary 1.27 

in [19] to Theorem 9 yields ∑    (   ⁄   )     
 

|    (    )|  |    (    )|  
∑    (     ⁄ )    

, from which the desired result 

follows.       

Corollary 11. For any object   in    

∑    (  ⁄   )

    

 ∑    (      ⁄ )

     

   

where    and     are the sets of all partitions of the 

  and    node sets, respectively. 

Proof of Corollary 11. Let      in Theorem 10 to 

obtain 
∑    (    ⁄   )      

 ∑    (      ⁄ )     
. 

But from Lemma 7,        so that this now 

becomes 

∑    (   ⁄   )   
  

 ∑    (      ⁄ )     
. 

Since     , then    ⁄    ⁄ . The result follows 

from the fact that there is a one-to-one 

correspondence between the set of injective 

homomorphisms from    ⁄  into   and the set of 

injective homomorphisms from   ⁄  into  .    

Theorem 12. If   is an object in  , then    ( )  

   (  ). 

Proof of Theorem 12. Let      in Theorem 9 in 

which case |    (     )|  |    (     )|  

   (  ). But from Lemma 7,        so that 

now |    (     )|  |    (    )|  

   (  ). Because      there is a one-to-one 

correspondence between the morphisms in set 

    (    ) and those in     (   ). 

Consequently, |    (    )|     ( ) and the 

proof is complete.    

Corollary 13.   is rigid if, and only if,    is rigid. 

Proof of Corollary 13. If   is rigid, then    ( )  

     (  ) which implies that    is also rigid. If 

   is rigid, then    (  )       ( ) which 

implies that   is also rigid.  □ 

5. Some Applications 

5.1 Dicycles 

It is clear that the dicycles (directed cycles)  ⃗  on   

nodes are objects in   since they are 1-regular, i.e. 

for every node   in  ⃗  there is exactly one arc   and 

exactly one arc   such that          . Dicycles 

are useful here because they provide trivial 

validations for aspects of the main results. In 

particular, since it is well known that   ⃗   ⃗ , then 

substituting this identity into and setting    ⃗  in 

Corollary 11 and Theorem 12 yields the tautologies   

∑    ( ⃗   ⁄   ⃗  )

   
 ⃗⃗⃗  

 ∑    ( ⃗     ⃗  ⁄ )

   
 ⃗⃗⃗  

 

and    ( ⃗ )     ( ⃗ ).  

5.2 de Bruijn Digraphs 

Let                 and 

                      be the set of all strings 

on   of length   and recall that the de Bruijn digraph 

 (   ) of dimension   on   symbols has    as its 

node set with   an arc in  (   ) if and only if 

                  when                . 

Because -  as is well known -  (   ) is  -regular, de 

Bruijn digraphs are objects in  . It is also well 

known that  (   ) is the line digraph of  (     ), 

provided that both digraphs have the same symbol set 

 . These properties lead to the following results for de 

Bruijn digraphs: 

Theorem 14. For any digraph   in  , 

|    (    (     ))|  |    (   (   ))| . 

Proof of Theorem 14. Let    (     ) and use 

the fact that      (     )   (   ) in 

Theorem 9 to obtain the result.    

Theorem 15. For any de Bruijn digraphs  (     ) 

and  (   ),  

∑    ( (     )  ⁄   (     ))

    (     )

 ∑    ( (   )    (   )⁄ )

    (   )

   

where   (     ) and   (   ) are the sets of all 

partitions of the  (     ) and  (   ) node sets, 

respectively. 

Proof of Theorem 15. Substitute    (     ) 

and the fact that      (     )   (   ) in 

Corollary 11.    

Theorem 16.    ( (     ))     ( (   ))  

Proof of Theorem 16. Substitute    (     ) 

and      (     )   (   ) in Theorem 12.    

 

5.3 Kautz Digraphs 

Similar to de Bruijn digraphs, a Kautz digraph 

 (   ) of dimension   on   symbols is a  -regular 

digraph that has all strings on   of length   with 

distinct consecutive symbols, i.e.        , as its 

node set and with   an arc in  (   ) if and only if 

                  when                . 

Thus, the Kautz digraphs are induced subdigraphs of 
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the de Bruijn subdigraphs and since they are  -

regular, they too are objects in  . It is also well 

known that for a fixed symbol set   ,  (   ) is the 

line digraph of  (     ). Since the proofs of the 

following theorems for Kautz digraphs closely follow 

those for de Bruijn digraphs, they are stated without 

proof. 

Theorem 17. For any digraph   in  , 

|    (    (     ))|  |    (   (   ))|. 

Theorem 18. For any Kautz digraphs  (     ) 

and  (   ),  

∑    ( (     )  ⁄   (     ))

    (     )

 ∑    ( (   )    (   )⁄ )

    (   )

  

where   (     ) and   (   ) are the sets of all 

partitions of the  (     ) and  (   ) node sets, 

respectively. 

Theorem 19.    ( (     ))     ( (   ))  

6. Closing Remarks 

The results in this paper were obtained via a novel 

application of a functor adjunction borrowed from 

theoretical biology. This approach not only illustrates 

the utility of category theory, but also suggests that 

category theory might play a role in acquiring in a 

fairly straightforward manner interesting new general 

mathematical results from otherwise unexpected 

disparate areas of science.   

 

In closing, it is noted that - whereas digraphs model 

system topologies – their associated line digraphs 

model what might be called their associated 

“interstitial spaces”. Consequently, the main results of 

this paper might be useful during aspects of 

engineering design processes. For example, if a 

system’s topology is represented by a digraph in 

category  , it might be important to know from 

Theorem 12 that a system and its “interstitial space” 

can be homomorphically “collapsed” onto themselves 

the same the number of ways. 
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