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Abstract: A nonlinear fitting model is proposed for the problem of nuclear energy spectrum decomposition. And the 
hybrid particle swarm optimization algorithm based on natural selection idea and random inertia weight is used to 
solve. First, a nonlinear fitting model was introduced. Secondly, the defects of the traditional particle swarm 
optimization algorithm based on linear inertia weight are analyzed, and the ideas of stochastic inertia weight and 
natural selection are integrated into the algorithm for these shortcomings. Then, according to the specific problems 
involved in this paper and the existing data, the continuous function model is transformed into a discrete series 
model. According to the nature that the absolute value is not less than zero, the fitness value is appropriately 
modified to achieve the purpose of improving the calculation accuracy and the operation speed of the algorithm.  
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1. Introduction 
Particle swarm optimization (PSO) simulates the 
process of foraging for birds, each bird representing a 
particle, which is also a possible solution to the 
problem [1-3]. Then, update the algorithm by updating 
the extremum: first is the optimal solution found by the 
particle itself, ie the individual extremum. The other 
extreme value is the optimal solution currently found 
by the entire population, namely the global 
extremum.[4-6]  
 
The traditional particle swarm optimization (PSO) 
performs extreme value optimization through 
individual extremum and group extremum.[7] It has the 
advantages of fast search speed, simple principle and 
easy operation. However, as with most optimization 
algorithms, it is easy to fall into the local optimal 
solution and cannot jump out.[8, 9] Secondly, in the 
adjustable parameters of the PSO, the processing of the 
inertia weight ω plays an important role in the final 
calculation of the entire algorithm. Increasing the value 
of ω can improve the global search ability of the 
algorithm, and reducing the value of ω can improve the 
local search ability of the algorithm. Therefore, 
designing a reasonable value of ω is the key to 
avoiding PSO falling into local optimum and 
improving search efficiency.[10-12] 

 
2. Principle and algorithm design 
2.1 Mathematical model 
A nonlinear fitting model of the decomposition of 
overlapping spectral peaks is proposed, which is 
expressed as follows： 

G(𝑥) = |𝐹(𝑥)2 − [∑ 𝑎𝑖
𝑀
𝑖=1 𝑓𝑖(𝑥)]2|   (1) 

Where: 𝐹(𝑥)  represents the initial mixed full 
spectrum of various elements, and 𝑎𝑖 represents the 
weight of the i-th element in the full spectrum, and 
satisfies: 

∑ 𝑎𝑖
𝑀
𝑖=1 = 1,   𝑎𝑖 ≥ 0           (2) 

M represents the number of elements participating in 
the mixing, and 𝑓𝑖(𝑥) represents the energy spectrum 
of the i-th element. 
 
2.2 Random inertia weight 
The inertia weighting factor ω is set to a random 
number obeying a normal distribution. The advantages 
of this approach are: 
 
If the particles can find a better and feasible solution in 
the initial stage, according to the characteristics of the 
normal distribution, the randomly generated ω may be 
a relatively small value, thereby speeding up the 
convergence of the algorithm. Second, it can overcome 
the best limitation that the algorithm caused by the ω 
linear decrement can not converge. 服 The inertia 
weighting factor obeying the normal distribution can be 
described by the following formula[12, 13]: 

{
𝜔 = 𝜇 + 𝛿 ∙ 𝑁(0,1)

𝜇 = 𝜇𝑚𝑖𝑛 + (𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛) ∙ 𝑟𝑎𝑛𝑑(0,1)
(3) 

Where 𝑁(0,1) represents a random number obeying 
the standard normal distribution, and 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛  
respectively represent the upper and lower limits of the 
parameter μ of the normal distribution.[13, 14] 
 
2.3 Particle Swarm Optimization Algorithm Based 
on Genetic Algorithm 
The PSO algorithm is simple and easy to implement, 
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and does not need to adjust too many parameters. 
[15]Although the convergence speed is fast in the early 
stage, it is affected by the random oscillation 
phenomenon in the later stage. This shortcoming makes 
it take a long time to search near the global optimal 
solution, which makes it easy to fall into the local 
minimum, the accuracy is reduced, and it is easy to 
diverge. The genetic algorithm has the advantage of 
strong global search ability. [16]Therefore, this paper 
introduces the natural selection idea in the traditional 
particle swarm optimization algorithm to improve the 
PSO algorithm.[17] In order to better decompose the 
energy spectrum 

 
In each iteration, the particle swarms are sorted 
according to the particle swarm fitness value, replacing 
the worst half of the particles with the best half of the 
population. At the same time, the historical optimal 
value remembered by each individual is preserved, 
thereby improving the global search ability of the PSO 
algorithm.[18] 

 
In summary, the introduction of random inertia weights 
and natural selection ideas in genetic algorithms into 
the PSO algorithm will help to improve the defects of 
PSO. 

 
2.4 Hybrid Particle Swarm Optimization Algorithm 
Based on Natural Selection and Random Inertia 
Weight 
The hybrid particle swarm algorithm based on natural 
selection and random inertia weighting is as follows [7, 
11, 16, 17, 19-22]: 
A. Randomly set the speed and position of each 

particle. 
 
Calculate the fitness value of each particle, and store 
the position and fitness value of the particle in the 
individual extreme value 𝑝𝑏𝑒𝑠𝑡  of the particle. 
The individual position and fitness values of the 
optimal fitness values in all 𝑝𝑏𝑒𝑠𝑡 are stored in the 
global optimal value 𝑔𝑏𝑒𝑠𝑡. 
B. Update the speed and position of the particles 

 𝑉𝑖,𝑗(𝑡 + 1) = 𝜔𝑉𝑖,𝑗(𝑡) + 𝑐1𝑟1[𝑝𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡)] +

𝑐2𝑟2[𝑝𝑔,𝑗 − 𝑥𝑖,𝑗(𝑡)] (4) 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝛽𝑉𝑖,𝑗(𝑡 + 1)(5) 

 

Where, 𝑉𝑖,𝑗(𝑡 + 1), 𝑋𝑖,𝑗(𝑡 + 1) represents the velocity 
and position of the i-th particle in the j-th dimension in 
the t+1-th iteration. 
𝑝𝑖,𝑗 , 𝑝𝑔,𝑗  respectively represent the global optimal 
value of the individual optimal value of the i-th particle 
at the end of the t-th iteration. 

 
𝑐1, 𝑐2 are learning factors, also called acceleration 
constants.𝑟1, 𝑟2 is a uniform random number in the 
range [0,1]. β is called the constraint factor and is used 
to adjust the weight，𝜔 is the inertia weight. 
C. Update weights by random weight method 

 
The fitness value of each particle is compared to the 
best position of the particle. If it is similar, the current 
value is taken as the best position of the particle. 
Compare all current 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡, update 𝑔𝑏𝑒𝑠𝑡 
 
Sort the particle swarms based on fitness values, 
replacing the worst half of the particles with the best 
half of the population, while preserving the historical 
best values remembered by each individual.[23-25] 
When the algorithm reaches the stop condition, the 
search is stopped and the result is output; otherwise, 
return to step C to continue the search. 
The algorithm flow chart is shown below: 

 

Fig .1 Algorithm flowchart 
 
3.Examples 
The hybrid particle swarm optimization algorithm 
based on natural selection and random inertia weight 
also has good precision for overlapping spectral peak 
decomposition in X-spectrum analysis. Due to the 
analysis of overlapping spectral peaks, there are still a 
series of difficulties such as real-time processing 
difficulties and convergence to local optimal solutions. 
At present, only a certain mathematical model can be 
used to transform this problem, so as to achieve the 
purpose of spectrum dissociation to the utmost extent. 
Xi Yang et al.[14] proposed a method for analyzing 
overlapping peaks based on Gaussian Mixture 
Model—Standard Deviation Related，(GMM-SDR) of 
particle swarm optimization, and obtained high 
precision results. However, due to the defects of the 



 
 

  

Nuclear Energy Spectrum Decomposition Based on Hybrid Particle Swarm Optimization 

 

 

 http://www.ijSciences.com          May 2019 (05) –Volume 8  

 

137 

traditional particle swarm algorithm, when the 
positions of the peaks are close to each other, or the 
area of the peaks differs greatly, the method may have a 
large error. The hybrid particle swarm optimization 
algorithm based on natural selection and random inertia 
weight proposed in this paper can improve the above 
problems to some extent. 
 
3.1 GMM-SDR model 
According to Hong-Quan Huang[26] et al., Gaussian 
Mixture Model—Standard Deviation Related ，
(GMM-SDR)： 

𝑃(𝑥|𝜃) = ∑ 𝑎𝑖
1

√2𝜋
2

𝑓𝜎(𝑖)
𝑒

−
(𝑥−𝑢𝑖)

2

2𝑓𝜎(𝑖)2𝑀
𝑖=1      (6) 

Where: 𝑎𝑖 represents the weight of the i-th peak and 
satisfies: 
∑ 𝑎𝑖

𝑀
𝑖=1 = 1,   𝑎𝑖 ≥ 0          (7) 

𝑢𝑖 , 𝑓𝜎(𝑖)are the mean and standard deviation of the i-th 
peak, respectively, which are linearly distributed in this 
paper. This correlation is reflected in the correlation 
between the standard deviations between the peaks, 
where 𝑓𝜎(𝑖) = 𝑢1𝑓𝜎(1)/𝑢1(𝑖 = 2,3 … , 𝑀) , 对 The 
parameters for the above GMM-SDR model can be 
expressed as: 

𝜃 = [

𝑎1, 𝑎2, … , 𝑎𝑀

 𝑢1, 𝑢2, … , 𝑢𝑀

𝑓𝜎(1), 𝑓𝜎(2) … 𝑓𝜎(𝑀)
]   (8) 

Parameter estimation method for the GMM-SDR 
model. First, a hybrid particle swarm optimization 
algorithm based on natural selection and random inertia 
weights is set. Secondly, the probability that the 
random number x(1),x(2),…,x(N) forming the original 
overlapping peak in the statistical sense is attributed to 
each GMM-SDR model is calculated. Finally, using the 
searched “global maximum probability” position 
information parameter θ as the final solution, the 
weight, mean and standard deviation of each peak of 
the overlapping spectrum can be obtained.  

 
3.2 Spectral decomposition with large difference in 
peak area 
As shown in Figure 2, the overlap spectrum of the 
setup experiment was formed by three Gaussian peaks 
with peak positions of 180, 190, and 205 and peak 
areas of 1500, 15000, and 15000, respectively. 

 

Fig.2 Overlapping peak 

Set the population to 50 and the initialization range to 

[0.01 0.01 0.01 160 160 160 3；1 1 1 225 225 225 8]. 
The number of iterations T=200，𝑐1 = 𝑐2 = 1.49445. 
The constraint factor 𝛽 = 0.5，𝜔𝑚𝑎𝑥 = 0.9, 𝜔𝑚𝑖𝑛 =
0.4。According to the traditional linear inertia weight 
particle swarm optimization algorithm, the image after 
decomposing the energy spectrum It can be seen 
intuitively that the energy spectrum with smaller peak 
area can not be solved, and the decomposition 
spectrum fails. 
 
The effect of the decomposition energy spectrum of the 
particle swarm optimization algorithm based on natural 
selection thought provided in this paper is as follows: 

 

Fig.3 Decomposed peak 
 

Original spectrum, GMM-SDR 
Peak of curve and decomposition 
Perform error analysis on the parameters after 
decomposing the energy spectrum, as shown in Table 1 

 
Table 1 error analysis 

 Raw data The 
Result of 
GMM-S

DR 

Relative 
error 

% 

a1 4.76% 4.35% 8.61 

a2 47.62% 47.91% 0.61 

a3 47.62% 47.74% 0.25 

u1 180 179.94 0.11 

u2 190 190.03 0.21 

u3 205 205.09 0.01 

fσ(1) 5.4 5.404 0.07 

fσ(2) 5.7 5.603 0.17 

fσ(3) 6.15 6.132 0.29 

 
4 Conclusion 
In the energy spectrum decomposition problem, the 
particle swarm optimization algorithm based on natural 
selection and stochastic inertia weight can realize the 
dissociation target more quickly and more accurately 
than the traditional linear inertia weight particle swarm 
optimization algorithm. Although the complex 
spectrum of the three peaks with large difference in 
decomposition peak area is high, the hybrid particle 
swarm optimization algorithm based on natural 
selection proposed in this paper still has a good effect 
on solving this problem. 
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