Dalbergia brasiliensis Vogel Extracts in vitro Antioxidant Activity and Phytotoxic Effect in Lactuca sativa and Allium cepa

Dalbergia brasiliensis Vogel Extracts in vitro Antioxidant Activity and Phytotoxic Effect in Lactuca sativa and Allium cepa

Loading document ...
Loading page ...


Author(s): Luciane Dalarmi, Cristiane Bezerra da Silva, Ellis Marina Szabo, Daniella Maria Soares de Oliveira, Maislian de Oliveira, Vinícius Bednarczuk de Oliveira, Sandra Maria Warumby Zanin, Josiane de Fátima Gaspari Dias, Obdulio Gomes Miguel, Marilis Dallarmi Miguel

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1251 205 590 80-87 Volume 6 - Apr 2017


Based on medicinal use of Dalbergia species, the present study aimed to evaluate D. brasiliensis leaves and barks crude extracts and fractions’ antioxidant and phytotoxic potential, employing allelopathic essays and 3 antioxidant essays: Phosphomolybdenum complex reduction, DPPH free radical scavenging and TBARS (lipid peroxidation). Concerning Phosphomolybdenum complex reduction potential, leaves chloroform fraction (LCF) and barks ethyl acetate fraction (BEAF) overcame rutin’s reduction potential in 90% and 23%. DPPH essay revealed leaves ethyl acetate fraction (LEAF) antioxidant potential (IC50 de 40,629 µg/mL), given standards ascorbic acid (IC50 = 4,503 µg/mL) and rutin (IC50 = 7,330 µg/mL) activities. TBARS essay demonstrated that leaves hexane fraction (LHF) (51%) and barks ethyl acetate fraction (BEAF) (41%) stand out when compared to BHT antioxidant activity (54%). Regarding phytotoxicity, the lowest crude extracts and fractions concentration (250 µg/mL) employed were able to inhibit L. sativa and A. cepa primary root initial growth, specially leaves hexane fraction (LHF) and leaves chloroform fraction (LCF). Dalbergia brasiliensis fractions might function as stress inhibitors in oxidant systems and alter meristem cellular division, due to present substances’ activity.


Allelopathy, primary root inhibition, antioxidant effect, oxidative stress


  1. Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst., p. 183–98, v.127, 2002.
  2. Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Ganem, F. R. Síntese de novas fitotoxinas derivadas do 8-oxabiciclo[3.2.1]oct-6-en-3-ona. Química Nova, p. 444-450, v. 28, n. 3, 2005.
  3. Barnes; J.P.; Putnam, A.R.; Burke, B.A.; Aasen, A.J. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry, p.1385-1390, v.26, n.5, 1987.
  4. Baziramakenga, R.; Leroux, G.D.; Simard R.R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol., p. 1271–1285, v. 21, 1995.
  5. Brasil. Ministério da Agricultura e Reforma Agrária. Regras para a Análise de Sementes, SNDA/DNDU/CLU, 2º Ed. Brasília, 2009.
  6. Carvalho, P.E.R. Jacarandá - Dalbergia brasiliensis. Curitiba: EMPRAPA-CNPF, 2004. (EMBRAPA-CNPF.Circular Técnica,98).
  7. Carvalho, J.L.S; Cunico, M.M.; Dias, J.F.G.; Miguel, M.D.; Miguel, O.G. Term-stability of extractive processes from Nasturtium officinale R. Br., brassicaceae for Soxhlet modified system. Quim Nova, p. 1031-5, v.32, 2009.
  8. Dayan, F.E.; Duke, S.O. Biological activity of allelochemicals. Plant-Derived Natural Products—Synthesis, Function and Application. Dordrecht, The Netherlands: Springer, p.361–384, 2009.
  9. Goldfarb, M; Pimentel, LW; Pimentel, NW. Alelopatia: relações nos agroecossistemas. Tecnol & Ciên Agropec. [Internet] 2009 [citado 2010 jul. 20];3(1)23-8. Disponível em: http://www.emepa.org.br/revista/volumes/tca_v3_n1_ fev/tca05_alelopatia.pdf.
  10. Haida, K.S.; Coelho, S.R.M.; Costa, J.H.; Viecelli, C.A.; Alekcevetch, J. C.; Barth, E.F. Efeito alelopático de Achillea millefolium L. sobre sementes de Lactuca sativa L. Revista em Agronegócios e Meio Ambiente, p. 101-109, v. 3, n. 1, 2010.
  11. Hallak, A. M. G.; Davide, L. C.; Souza, I. F. Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genet. Mol. Biol., p. 95–99, v.22, 1999.
  12. Halliwell, B. Biochemistry of oxidative stress. Biochem Soc Trans., p. 1147–50, v.35, 2007.
  13. Harbone, B. The Flavonoids- Advances in Research. since. 1986. Chapman. &. Hall, London,. U.K.. 1994.
  14. Jácome, R.L.R.P.; Lopes, D.E.S.; Recio, R.A.; Macedo, J.F.; Oliveira, A.B. Caracterização farmacognóstica de Polygonum hydropiperoides Michaux e P. spectabile Mart. (Polygonaceae). Revista Brasileira de Farmacognosia, v. 14, n.1, p. 21-27, 2004.
  15. Kasote, D.M.; Hegde, M.V.; Katyare, S.S. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors, p. 392–06, v.39, 2013.
  16. Macias, F. A.; Castellano, D.; Molinillo, J. M. G. Search for a standart phytotoxic biossay for allelochemicals. Selection of standard target species. Journal Agricultural and Food Chemistry., p. 2512-2521, v. 48, n. 6, 2000.
  17. Maguire, J.D. Speed of germination – aid in selection and evaluation for seedling emergence and vigor. Rev Bras Sementes. [Internet] 1962 [citado 1962 mar.]; v.2(2), p.176-7. Disponível em: http://www.scielo.br/scielo.php?pid=S010131222010000300015&script=sci_arttext.
  18. Mensor, L.L.; Menezes, F.S.; Leitao, G.G.; Reis, A.S; Santos, T.C.; Coube, C.S.; Leitao, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res., p. 127-30, v.15, 2001.
  19. Morais, S.M.; Catunda-Jr, E.A.; Silva, A.R.A; Martins-Neto, J.S. Atividade antioxidante de óleos essenciais de espécies de Croton do nordeste do Brasil. Quim Nova, p. 907- 910, v.29, 2006.
  20. Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings.J. Chem. Ecol., p. 1187–1203, v. 31, 2005.
  21. Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem., p. 337-41, v. 269, 1999.
  22. Saha, S; Shilpi, J.A.; Mondal, H.; Hossain, F.; Anisuzzman, M.; Hassan, M.M.; Cordell, G.A. Ethnomedicinal, phytochemical and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology, v.4, p.291-346, 2013.
  23. Sanchez-Moreiras, A.M.; De La Pena, T.C.; Reigosa, M.J. The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry, p. 2172–2179, v.69, 2008.
  24. Sies, H. Oxidative stress: oxidants, antioxidants. Exp Physiol., p. 291–95, 1997.
  25. Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci., p. 239–311, v.22, 2003.
  26. Szent-Giörgyi, A. Lost in the twentieth century. Annu Rev Biochem., p. 1–15, v.36, 1963.
  27. Vasudeva, N.; Vats, M.; Sharma, S.K.; Sardana, S. Chemistry and biological activities of the genus Dalbergia. Pharmacognosy Review, p.307-319, v.3, n.6, 2009.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper