GC-MS analysis and antimicrobial effects of methanol stem bark extract of Trilepisium madagascriense DC.

GC-MS analysis and antimicrobial effects of methanol stem bark extract of Trilepisium madagascriense DC.

Loading document ...
Loading page ...


Author(s): Olufunmiso O. Olajuyigbe, Faith O Ijeyan, Morenike O. Adeoye-Isijola

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1366 184 613 34-45 Volume 6 - Aug 2017


The therapeutic potentials of methanol stem bark extract of Trilepisium madagascriense was determined using Gas Chromatography-Mass Spectrometry to identify its bioactive compounds of pharmaceutical importance while the antimicrobial activities were assayed in vitro by agar well diffusion and macrobroth dilution techniques against different microbial isolates. The mass spectra of the identified compounds in the extract at different retention time showed the presence of ethyl iso-allocholate, (3β,5Z,7E)-9,10-Secocholesta-5,7,10(10)-triene-3,24,25-triol, 2,6-Dimethoxyamphetamine, 4-Hexenoic acid, 4-methyl-6-(fluorodimethylsilyl)-6-trimethysily-, 2-methoxy-4-(methoxymethyl)-Phenol, 2-methoxy-1,4-Benzenediol, 2,4-Dimethoxyphenol, Indole, Paromomycin, Hydroquinone and Tetrahydro-N-[(tetrahydro-2-furanyl)methyl-2-Furanmethanamine amongst other bioactive compounds of therapeutic potentials. This extract showed antimicrobial activities. At the lowest concentration of 25 mg/ml, 100 µl of the extract produced inhibition zones ranging between 14 and 18 ± 1.0 mm and inhibition zones ranging between 18 and 28 ± 1.0 mm in all the isolates at the highest concentration of 100 mg/ml. While the bacterial MICs ranged between 1.25 and 5 mg/ml and the MBCs ranged between 2.5 and 10 mg/ml, the fungal MICs ranged between 0.098 and 12.5 mg/ml while the MFCs ranged between 0.781 and <25 mg/ml. With exception of MICindex of Klebsiella pneumoniae ATCC 10031 which was equal to 4, the MICindex of other isolates ranged between 1 and 2. Klesbiella pneumoniae ATCC 10031 and Proteus vulgaris CSIR 0030 had the highest MICs of 1.25 mg/ml, followed by B. cereus ATCC 10702, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 19582, Enterococcus faecalis ATCC 29212 and Bacillus subtilis KZN with MICs of 2.5 mg/ml while Escherichia coli ATCC 25922, Enterococcus cloacae ATCC 13047, Enterococcus faecalis KZN, Shigella sonnei ATCC 29930, Klebsiella pneumoniae KpFa, Staphylococcus aureus SaFa, Escherichia coli EcFa and Pseudomonas aeruginosa PmFa had the least MICs of 5.0 mg/ml. Enterococcus faecalis KZN, Bacillus subtilis KZN and Proteus vulgaris CSIR 0030 had the highest MBCs of 2.5 mg/ml. Although Candida albicans had MICs ranging between 0.098 mg/ml and Candida tropicalis had the least MICs of 12.5 mg/ml, the MFCs were 0.781 mg/ml and 25 mg/ml. This study shows that the pharmacological effects of Trilepisium madagascriense depends on bioactive compounds identified while this plant is a source for isolating novel drugs having significant therapeutic potentials.


Antimicrobial, bioactive phytoconstituents, betulin, paromomycin, pharmacological effects


  1. Aburjai, T.; Darwish, R.M.; Al-Khalil, S.; Mahafza, A.; Al-Abbadi, A. (2001) Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa. J. Ethnopharmacol., p. 39 – 44, v. 76, 2001.
  2. Ahvazia, M,; Khalighi-Sigaroodib, F.; Charkhchiyanc, M.M.; Mojabd, F.; Mozaffariane, V.A.; Zakerif, H. Introduction of Medicinal Plants Species with the Most Traditional Usage in Alamut Region. Iranian J. Pharm. Res., p. 185 – 194, v. 11(1), 2012.
  3. Alp, S. Bacterial resistance to antiseptics and disinfectants. Mikrobiyoloji Bulteni, p. 155-161, 41, 2007.
  4. Ampa, R.; Ahomboi, G.; Nguimbii, E.; Diatewa, M.; Dimo, T.; Ouambai, M.; Abena, A.A. Evaluation of hypoglycemic, antihyperglycemic and antidiabetic properties of Trilepisium madagascariense D.C. Leeuwenberg (Moraceae). J. Biotechnol. Pharmaceut. Res., p. 48 – 53, 4(3), 2013.
  5. Ango, P.Y.; Kapche, D.W.; Kuete, V.; Ngadjui, B.T.; Bezabih, M.; Abegaz, B.M.; Chemical constituents of Trilepisium madagascariense (Moraceae) and their antimicrobial activity. Phytochem. Lett., p. 524 – 528, v. 5(3), 2012.
  6. Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., p. 431, 78, 2005.
  7. Bamberger, D.M.; Peterson, L.R.; Gerding, D.N.; Moody, J.A.; Fasching, C.E. Ciprofloxacin, azlocillin, ceftizoxime, and amikacin alone and in combination against Gram negative bacilli in an infected chamber model. J. Antimicrob. Chemother., p. 51–63, v. 18, 1986.
  8. Bull, D. Gas chromatography mass spectrometry. Bristol Biogeochemistry Research Centre © 2002 – 2015 University of Bristol, 2008.
  9. Cheesbrough, M. () Medical Laboratory Manual for Tropical Countries, ELBS ed; Tropical health technology publications and Butterworth–Heinemann Ltd: Cambridge, UK, p. 2-392, v. 2, 2002.
  10. Cheesbrough, M. District Laboratory Practice in Tropical Countries. Part 2: Cambridge University press, Cambridge, p. 62-69, 2009.
  11. Chierrito, T.P.; Aguiar, A,C.; Andrade, I,M.; Ceravolo, I.P.; Goncalves, R,A.; Oliveira, A.J.; Krettli, A.U. Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malaria J.; p. 142, v. 13, 2014.
  12. Chowdhury, A.N.; Ashrafuzzaman, M.; Ali, H.; Liza, L.N.; Zinnah, M.A. Antimicrobial activity of some medicinal plants against multidrug resistant human pathogens. Adv. Biosci. Biotechnol., p. 1 – 24, v. 1(1), 2013.
  13. Cock, I.; Setzer, W.N.; Ruebhart, K.D.; El Dahshan, O.A.; Tomczyk, M. An anti-diabetic and hypolipidemic effects from Azadirachta indica leaves. Afr. J. Biotechnol., p. 3084–3091, v. 8(13), 2009.
  14. Cueva, C.; Moreno-Arribas, M.V.; Martin-Alvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodriguez, J.M.; Bartolome, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol., p. 372 – 382, v. 161(5), 2010.
  15. Darwish, R.M.; Aburjai, T.; Al-Khalil, S.; Mahafza, A.; Al-Abbadi, A. (2002) Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus. J. Ethnopharmacol., p. 359 – 364, v. 79, 2002.
  16. Davidson, R.N.; Den, B.M.; Ritmeijer, K. Paromomycin. Trans. Royal Soc. Trop. Med. Hyg., p. 653 – 660, v. 103(7), 2009.
  17. Doughari, J.H. Phytochemicals: Extraction methods, basic structures and mode of action as potential chemotherapeutic agents. Intechnology, DOI: 10.5772/26052, 2012.
  18. Duhan, J.S.; Saharan, P.; Surekha Kumar, A. (2013) Antimicrobial potential of various fractions of Thuja orientalis. Afr. J. Microbiol. Res., p. 3179 – 3186, v. 7, 2013.
  19. European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2000) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect., p. 509–515, v. 6, 2000.
  20. Fahey, T. Cryptosporidiosis. Primary Care Update for OB/GYNS p, 75-80, v, 10, 2003.
  21. Fasching, C.E.; Peterson, L.R.; Moody, J.A.; Sinn, L.M.; Gerding, D.N. Treatment evaluation of experimental staphylococcal infections comparing β-lactam, lipopeptide, and glycopeptide antimicrobial therapy. J. Lab. Clin. Med., p. 697–706, v. 116, 1990.
  22. Flanigan, T.P.; Ramratnam, B.; Graeber, C.; Hellinger, J.; Smith, D.; Wheeler, D.; Hawley, P.; Heath-Chiozzi, M.; Ward, D.J.; Brummitt, C.; Turner, J. Prospective Trial of paromomycin for cryptosporidiosis in AIDS. Am, J, Med., p. 370 – 372, v. 100, 1996.
  23. Forbes, B.A.; Sahm, D.F.; Weissfeld, A.S. Bailey and Scott’s diagnostic microbiology. 12th ed. Mosby; p. 98-257, 2007.
  24. Francois, B.; Szychowski, J.; Adhikari, S,S.; Pachamuthu, K.; Swayze, E.E.; Griffey, R.H.; Migawa, M.T. Antibacterial aminoglycosides with a modified mode of binding to the ribosomal-rna decoding site. Angewandte Chemie International Edition, p. 6735 – 6738, v. 43. 2004.
  25. Geetha, T.S.; Geetha, N. Phytochemical Screening, Quantitative analysis of primary and secondary metabolites of Cymbopogan citratus (DC) stapf. leaves from Kodaikanal hills, Tamilnadu. Int. J. PharmTech. Res., p. 521 – 529, v. 6(2), 2014.
  26. Gracelin, H.S.; Britto, A.J.; Kumar, B.J.R. Qualitative and quatitative analysis of phytochemicals in five Pteris species. Int. J. Pharm. Pharmaceut. Sci., p. 105 – 107, v. 5(1), 2013.
  27. Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 2nd edn. Chapman and Hall, New York, 1984.
  28. Havagiray, R.; Ramesh, C.; Sadhna, K. Study of antidiarrhoeal activity of Calotropis gigantean r.b.r. in experimental animals. J. Pharmaceut. Sci., p. 70 – 5, v. 7, 2004.
  29. Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Williams, S.T. Staphylococcus spp. In: Bergey’s manual of determinative bacteriology, 9th ed. Baltimore, MD: Williams & Wilkiins; p. 544-51, 1994.
  30. Hossain, M.A.; Nagooru, M.R. (2011) Biochemical profiling and total flavonoids contents of leaves crude extract of endemic medicinal plant Corydyline terminalis L. Kunth,. Pharmacog. J., 25–30, v. 3, 2011.
  31. Huang, C.B.; Alimova, Y.; Myers. T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. of Oral Biol., p. 650 – 654, v. 56(7), 2011.
  32. Iinuma, M.; Tsuchiya, H.; Sato, M.; Yokoyama, J.; Ohyama, M.; Ohkawa, Y.; Tanaka, T.; Fujiwara, S.; Fujii T. Flavanones with potent antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol., p. 892 – 895, v. 46, 1994.
  33. Irkin, R.; Korukluoglu, M. () Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol., p. 384–387, v. 6, 2007.
  34. Iwaki, K.; Koya-Miyata, S.; Kohno, K.; Ushio, S.; Fukuda, S. Antimicrobial activity of Polygonum tintorium Lour. extract against oral pathogenic bacteria. Nat. Med., p. 72–79, v. 53, 2006.
  35. Kar, A.; Dethi, A.; Ababa, A. Pharmacognosy and Phytochemistry, Nirali Prakashan, India, pp. 238–239, 2007.
  36. Kawsar, S.M.; Faruk, O.; Ozeki, Y. Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives. Scientia Pharmaceut., p. 1 – 20 v. 82(1), 2014.
  37. Khan, A.; Rhaman, M.; Islam S. Antibacterial, antifungal and cytotoxic activities of tuberous roots of Amorphophallus campanulatus. Turkish J. Biol., p. 167–172, v. 31, 2007.
  38. Kim, H.; Park, S.W.; Park, J.M.; Moon, K.H.; Lee, C.K. Screening and isolation of antibiotic resistant inhibitors from herb materials I -Resistant Inhibition of 21 Korean Plants. Nat. Prod. Sci., p. 50 – 54, v. 1, 1995.
  39. Kuiate, J.K. Antidiarrheal, antimicrobial and antioxidant properties of two cameroonian medicinal plants: Trilepisium madagascariense DC. leeuwenberg (Moraceae) and Entada abyssinica (Mimosaceae). Jules-Roger et la paix: Publications scientifiques, 2011. http://jrkuiate.blog4ever.com/blog/index-318439.html Assessed 17/2/201.
  40. Li, M.; Zhou, L.; Yang, D.; Li, T.; Li, W. Biochemical composition and antioxidant capacity of extracts from Podophyllum hexandrum rhizome. BMC Compl. Alt. Med., p. 263, v. 12, 2012.
  41. Listorti, J.A.; Doumani, F.M. Environmental health: Bridging the gaps. World Bank Publications: p. 372, 2001.
  42. Lu, J.; Cwik, M.; Kanyok, T. () Determination of paromomycin in human plasma and urine by reversed-phase high-performance liquid chromatography using 2,4-dinitrofluorobenzene derivatization. J. Chromatog. Biomed. Sci. Appl., p. 329 – 335, v. 695, 1997.
  43. Lucantoni, L.; Yerbanga, R.S.; Pasqualini, G.L.L.; Esposito, F.; Habluetzel, A.; Transmission blocking activity of a standardized neem (Azadirachta Indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi. Malaria J., p. 66–70, v9, 2010.
  44. Lyantagaye, S.L. Characterization of the biochemical pathway of apoptosis induced by D-glucopyranoside derivatives from Tulbaghia violacea. Ann. Res. Rev. Biol., p. 962 – 977, v. 4(6), 2013.
  45. Manorenjitha, M.S.; Norita, A.K.; Norhisham, S.; Asmawi, M.Z. GC-MS analysis of bioactive components of Ficus religiosa (linn.) stem. International Journal of Pharmacology and Biosciences, p. 99 – 103, v. 4(2), 2013.
  46. Medeiros, M.B.; Prado, L.A.; Fernandes, V.C.; Figueiredo, S.S.; Coppede, J.; Martins, J.; Fiori, G.M.; Martinez-Rossi, N.M, .; Beleboni, R.O.; Contini, S.H.; Pereira, P.S.; Fachin, A.L. Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis, Natural Product Communications, p. 193–196, v. 6(2), 2011.
  47. Meyer, J.M.; Ryu, S.; Pendland, S.L.; Kanyok, T.P.; Danziger, L.H. In-vitro energy of paromomycin with metronidazole alone or metronidazole against Helicobacter pylori. J Antimicrob Chemother., p. 403 – 406, v. 43, 1999.
  48. Moody, J.A.; Fasching, C.E.; Peterson, L.R.; Gerding, D.N. Ceftazidime and amikacin alone and in combination against Pseudomonas aeruginosa and Enterobacteriaceae. Diagn. Microbiol. Infect. Dis., p. 59–67, v. 6, 1987.
  49. Murray, H.W.; Berman, J.D.; Davies, C,R.; Saravia, N,G. (2005) Advances in Leishmaniasis. The Lancet, 366, 1561 – 1577.
  50. Muthulakshmi, A.; Jothibai, M.R.; Mohan, V.R. GC-MS Analysis of bioactive components of Feronia elephantum Correa (Rutaceae). J. Appl. Pharmaceut. Sci., p. 69 – 74, v. 2(2), 2012.
  51. Obeidat, M.; Shatnawi, M.; Al-alawi, M.; Al-Zu’bi, E.; Al-Dmoor, H.; Al-Quadah, M.; El-Qudah, J.; Otri, I. (2012) Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol., p. 59 – 67, v. 7, 2012.
  52. Olajuyigbe, O.O.; Afolayan, A.J. (2011) In vitro antibacterial activities of the methanol extract of Ziziphus mucronata Willd. subsp. mucronata Willd. J. Med. Plants Res., p. 3791 – 3795, v. 5(16), 2011.
  53. Olajuyigbe, O.O.; Afolayan, A.J. (2012) In vitro pharmacological activity of the crude acetone extract of Erythrina caffra Thunb: Antibacterial and antifungal assessment. J. Med. Plants Res., p. 1713 – 1720, v. 6(9), 2012.
  54. Prindle RF. Phenolic compounds. In: block SS, ed. Disinfection, sterilization and preservation. Philadelphia: Lea & Febiayger, p. 197 – 224, 1983.
  55. Rosenthal, G.A. The biochemical basis for the deleterious effects of L-canavanine. Phytochem., p. 1055-1058, v. 30, 1991.
  56. Sabrina, K.; Huffman, M.; Se`Venet, T.; Hladik, C.; Grellier, P.; Loiseau, P. (2006) Bioactive properties of plant species ingested by chimpanzees (Pantroglodytes schweinfurthii) in the Kibale National Park, Uganda. American J. Primatol., p. 51 – 71, v. 68, 2006.
  57. Samuelsson, G.; Bohlin, L. Drugs of natural origin. A Textbook of Pharmacognosy 5th Edition, Swedish Pharmaceutical Press, Stockholm: p. 620, 2004.
  58. Samuni-Blank, M.; Izhaki, I.; Dearing, M.D.; Gerchman, Y.; Trabelcy, B.; Lotan, A.; Karasov, W.H.; Arad, Z. Intraspecific Directed Deterrence by the Mustard Oil Bomb in a Desert Plant. Curr. Biol., p. 1218-1220, 22(13), 2012.
  59. Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Photochemistry of medicinal plants. J. Pharmacog. Phytochem., p. 168 – 180, v. 1(6), (2013).
  60. Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother., p. 214–219, v. 26,1984.
  61. Shanmughapriya, S.A.; Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.S. Natarajaseenivasan. K. Antimicrobial activity of seaweeds extracts against multi-resistant pathogens. Ann. Microbiol., p. 535-541, v. 58, 2008.
  62. Singariya, P.; Kumar, P.; Mourya, K.K. Isolation of new steroids of Kala Dhaman grass (Cenchrus setigerus) and evaluation of their bioactivity. Int. J, Res. Pharmaceut. Sci., p. 678 – 684, v. 3(4), 2012.
  63. Small, E.; Catling, P.M. Canadian medicinal crops. NRC Research Press, Ottawa, Ontario Canada. p. 240, 1999.
  64. Sriranmsridharan, () GC-MS Study and Phytochemical profiling of Mimosa pudica linn. J. Pharmaceut. Res., 741-742, 4(3), 2011.
  65. Stamp, N. “Out of the Quagmire of Plant Defense Hypotheses.” The Quarterly Rev. Biol., p. 23-55, v. 78(1), 2003.
  66. Stead, D.A. Current methodologies for the analysis of aminoglycosides. J. Chromatog., p. 69 – 93. v. 747, 2000.
  67. Sudha, T.; Chidambarampillai, S.; Mohan, V.R. GC-MS analysis of bioactive components of aerial parts of Kirganelia reticulata poir (Euphorbiaceae). J. Curr. Chem. Pharmaceut. Sci., p. 113–122, v. 3(2), 2013.
  68. Sundar, L.; Chang. F.N. (1993) Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus.
  69. Tanaka, J.C.; Silva, C.C.; Oliveira, A.J.; Nakamura, C.V.; Filho, B.P.; Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Brazilian J. Med. Biol. Res. p. 387 – 391, v. 39(3), 2006.
  70. Teke, G.N.; Kuiate, J.R., Kuete, V.; Teponno, R.B.; Tapondjou, L.A.; Vilarem, G. Antidiarrheal activity of extracts and compound from Trilepisium madagascriense stem bark. Indian J. Pharmacol., p. 157 – 163, v. 42(3), 2010.
  71. Teke, G.N.; Kuiate, J.R.; Kuete, V.; Tepomo, R.B.; Tapondjou, L.A.; Tane, P.; Giacinti, G.; Vilarem, G. Bio-guided isolation of potential antimicrobial and antioxidant agents from the stem bark of Trilepisium madagascariense. South Afr. J. Bot., p. 319 – 327, v. 77(2), 2011.
  72. Tiwari, R.; Chakraborty, S.; Saminathan, M.; Dhama, K.; Singh, S.V. Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J. Biol. Sci., p. 77-94, v. 14, 2014.
  73. Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Res. Int. Article, ID 761741, 2014. http://dx.doi.org/10.1155/2014/761741.
  74. Velmurugan, S.; Babu, M.M.; Punitha, S.M.; Viji, V.T.; Citarasu, T. (2012) Screening and characterization of antiviral compounds from Psidium guajava Linn. root bark against white spot syndrome virus. Indian J. Nat. Prod. Res., p. 208 – 214, v. 3(2), 2012.
  75. Wadood, A.; Ghufran, M.; Jamal, S.B.; Naeem, M.; Khan, A.; Ghaffar, R.; Asnad. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem. Anal. Biochem., 2: 144, 2013.
  76. Wikler, M.A. Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth Informational Supplement: Part M2-A9. M100-S17; C.L.S.I. (Clinical and Laboratory Standard Institute): Pennsylvania, PA, USA, 2007.
  77. Wikler, M.A. Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth informational supplement; M100-S18; C.L.S.I. (Clinical and Laboratory Standard Institute): Pennsylvania, PA, USA, p. 46–52, v. 28(1), 2008.
  78. Zhu, W.M.; He, H.P. Fan, L.M.; Shen. Y.M.; Zhou, J.; Hao, X.J. Components of stem barks of Winchia calophylla A. DC. and their bronchodilator activities. J. Integ. Plant Biol., p. 892 – 896, v. 47(7), 2005.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue May 2021

Volume 10, May 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper