Applications of Polypyrrole/Polyester Textiles: A Review

Applications of Polypyrrole/Polyester Textiles: A Review

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1391 215 522 98-107 Volume 6 - Aug 2017


The polypyrrole, in its intrinsically conducting form, can be used to prepare composites such as polypyrrole/polyester textiles by coating yarns or fabrics made of polyester. In this manner, we obtain textiles that can be involved in several applications, among which we find the use of textiles in electromagnetic shielding. However, several other uses of polypyrrole/polyester composites are possible, such as in biomedical applications. Here we propose a survey of the literature about these composites.


Textiles, Polypyrrole, Intrinsically Conducting Polymers, Electromagnetic shielding


  1. Kuhn, H. H. (1993). Characterization and application of polypyrrole-coated textiles. In Intrinsically Conducting Polymers: An Emerging Technology (pp. 25-34). Springer Netherlands. DOI: DOI: 10.1007/978-94-017-1952-0_3
  2. Smith, W. C. (2010). Smart textile coatings and laminates. Elsevier. ISBN: 1845697782, 9781845697785
  3. Buckley, R. W. (2003). Polymer enhancement of technical textiles. iSmithers Rapra Publishing. ISBN: 1859573959, 9781859573952
  4. Roshan, P. (2014). Functional finishes for textiles: Improving comfort, performance and protection. Elsevier. ISBN: 0857098454, 9780857098450
  5. Skotheim, T. A. (1997). Handbook of Conducting Polymers, Second Edition, CRC Press. ISBN: 0824700503, 9780824700508
  6. Ji, Li Na (2013). Study on preparation process and properties of polyethylene terephthalate (PET). Applied Mechanics and Materials. 312, 406–410. DOI: 10.4028/
  7. Schuler, M. J. (1981). Dyeing primer. Part 8: Dyeing with disperse dyes. AATCC. Research Triangle Park, NC, USA, p. 21.
  8. Vernitskaya, T. V., & Efimov, O. N. (1997). Polypyrrole: a conducting polymer, its synthesis, properties and applications. Russian Chemical Reviews, 66 (5), 443–457. DOI: 10.1070/RC1997v066n05ABEH000261
  9. McNeill, R., Siudak, R., Wardlaw, J. H., & Weiss, D. E. (1963). Electronic conduction in polymers. I. The Chemical Structure of Polypyrrole. Aust. J. Chem. 16, 1056–75. DOI: 10.1071/CH9631056.
  10. Heeger, A. (2000). Semiconducting and metallic polymers: The fourth generation of polymeric materials. Nobel Lecture, December 8, 2000, Aula Magna, Stockholm University. DOI: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
  11. MacDiarmid, A. G. (2000). Synthetic metals: A novel role for organic polymers. Nobel Lecture, December 8, 2000, Aula Magna, Stockholm University. DOI: DOI: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  12. Shirakawa, H. (2000). The discovery of polyacetylene film: The dawning of an era of conducting polymers. Nobel Lecture, December 8, 2000, Aula Magna, Stockholm University. DOI: 10.1002/1521-3773(20010716)40:14<2574::AID-ANIE2574>3.0.CO;2-N
  13. Kasevich, R. S. (2002). Cellphones, radars, and health, Spectrum IEEE, 39, 15-16. DOI: 10.1109/MSPEC.2002.1021945
  14. Hemming, L. H. (2000). Architectural electromagnetic shielding handbook: A design and specification guide. Wiley-IEEE press. ISBN: 0780360249, 9780780360242
  15. Sparavigna, A. C. (2016). Engineered polymers for preventing electrostatic discharge in packaging. SSRN Electronic Journal, Paper n.2833724. DOI: 10.2139/ssrn.2833724
  16. Dordevic, Z. (1992). Textile fabric shielding electromagnetic radiation and clothing made thereof. Finex-Handels-Gmbh. Patent US5103504 A
  17. Last, B. J., & Thouless, D. J. (1971), Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719-1721. DOI: 10.1103/PhysRevLett.27.1719
  18. Miyasaka, K. (1986). Mechanism of electrical conduction in electrically-conductive filler-polymer composites. Int. Polym. Sci. Technol., 13, 41–48.
  19. Simon, R. M., & Stutz, D. (1983). Test methods for shielding materials. EMC Technol. 2 (4), 39–48.
  20. Martin, P. M. (2009). Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew. ISBN: 0815520328, 9780815520320
  21. Bishop, C. (2011). Vacuum deposition onto webs, films and foils. William Andrew. ISBN: 1437778682, 9781437778687
  22. Huang, J. C. (1995). EMI shielding plastics: A review. Advances in polymer technology, 14 (2), 137-150. DOI: 10.1002/adv.1995.060140205
  23. Han, E. G., Kim, E. A., & Oh, K. W. (2001). Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics. Synthetic Metals, 123 (3), 469-476. DOI: 10.1016/S0379-6779(01)00332-0
  24. Lu, Y., Jiang, S., & Huang, Y. (2010). Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding. Surface and Coatings Technology, 204 (16), 2829-2833. DOI: 10.1016/j.surfcoat.2010.02.061
  25. Lili, L., Dan, Y., Le, W., & Wei, W. (2012). Electroless silver plating on the PET fabrics modified with 3‐mercaptopropyltriethoxysilane. Journal of Applied Polymer Science, 124 (3), 1912-1918. DOI: 10.1002/app.35100
  26. Xueping, G., Yating, W., Lei, L., Bin, S., & Wenbin, H. (2008). Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics. Journal of Alloys and Compounds, 455 (1-2), 308-313. DOI: 10.1016/j.jallcom.2007.01.054
  27. Gan, X. P., Wu, Y. T., Hu, W. B., & Tang, Y. W. (2007). Study on properties of conductive PET fabrics prepared by electroless Copper and Nickel plating. Journal of Materials Engineering, 8, 002. URL:
  28. See report given at
  29. Henn, A. R., & Cribb, R. M. (1992). Modeling the shielding effectiveness of metallized fabrics. International Symposium on Electromagnetic Compatibility IEEE. DOI: 10.1109/isemc.1992.626095
  30. Henn, A. R. (1996). Interference Technology Engineering Master (ITEM) Update, p. 66-72.
  31. Lai, K., Sun, R. J., Chen, M. Y., Wu, H., & Zha, A. X. (2007). Electromagnetic shielding effectiveness of fabrics with metallized polyester filaments. Textile Research Journal, 77 (4), 242-246. DOI: 10.1177/0040517507074033
  32. Ortlek, H. G., Saracoglu, O. G., Saritas, O., & Bilgin, S. (2012). Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers and polymers, 13 (1), 63-67. DOI: 10.1007/s12221-012-0063-6
  33. Su, C. I., & Chern, J. T. (2004). Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Research Journal, 74 (1), 51-54. DOI: 10.1177/004051750407400109
  34. Goosey, M. (2012). Plastics for electronics. Springer Science & Business Media. ISBN: 9400949421, 9789400949423.
  35. Sparavigna A., Henn, A.R., & Florio, L. (2005). Textiles as electromagnetic shields for human and device safety. In Applied Physics, Recent Res. Develop., pp. 1-20. ISBN: 9788178951874
  36. Wong, P. T. C., Chambers, B., Anderson, A. P., & Wright, P. V. (1992). Large area conducting polymer composites and their use in microwave absorbing material. Electronics letters, 28 (17), 1651-1653. DOI: 10.1049/el:19921051
  37. Wright, P. V., Wong, T. C. P., Chambers, B., & Anderson, A. P. (1994). Electrical characteristics of polypyrrole composites at microwave frequencies. Advanced Functional Materials, 4 (4), 253-263. DOI: 10.1002/amo.860040404
  38. Kim, M. S., Kim, H. K., Byun, S. W., Jeong, S. H., Hong, Y. K., Joo, J. S., Song, K. T., Kim, J. K., Lee, C. J., & Lee, J. Y. (2002). PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic metals, 126 (2), 233-239. DOI: 10.1016/S0379-6779(01)00562-8
  39. Chandrasekhar, P., & Naishadham, K. (1999). Broadband microwave absorption and shielding properties of a poly (aniline). Synthetic metals, 105 (2), 115-120. DOI: 10.1016/S0379-6779(99)00085-5
  40. Wessling, B. (1998). Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline). Synthetic Metals, 93 (2), 143-154. DOI: 10.1016/S0379-6779(98)00017-4
  41. Koul, S., Chandra, R., & Dhawan, S. K. (2000). Conducting polyaniline composite for ESD and EMI at 101GHz. Polymer, 41 (26), 9305-9310. DOI: 10.1016/S0032-3861(00)00340-2
  42. Gangopadhyay, R., De, A., & Ghosh, G. (2001). Polyaniline–poly (vinyl alcohol) conducting composite: material with easy processability and novel application potential. Synthetic Metals, 123 (1), 21-31. DOI: 10.1016/S0379-6779(00)00573-7
  43. Hong, Y. K., Lee, C. Y., Jeong, C. K., Sim, J. H., Kim, K., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., & Byun, S. W. (2001). Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Current App. Physics, 1 (6), 439-442.
  44. Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S. & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polym. Adv. Technol. 13, 577-583. DOI: 10.1002/pat.227
  45. Håkansson, E., Amiet, A., & Kaynak, A. (2006). Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18GHz frequency range. Synthetic metals, 156 (14), 917-925. DOI: 10.1016/j.synthmet.2006.05.010
  46. Kaynak, A. and Beltran, R. (2003), Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly(ethylene terephthalate) fabrics. Polym. Int., 52, 1021–1026. DOI: 10.1002/pi.1195
  47. Kuhn, H. H., Child, A. D., & Kimbrell, W. C. (1995). Toward real applications of conductive polymers. Synthetic Metals, 71 (1-3), 2139-2142. DOI: 10.1016/0379-6779(94)03198-F
  48. Child, A. D., & Kuhn, H. H. (1997). Enhancement of the thermal stability of chemically synthesized polypyrrole. Synthetic metals, 84 (1), 141-142. DOI: 10.1016/S0379-6779(97)80684-4
  49. Appel, G., Yfantis, A., Göpel, W., & Schmeiβer, D. (1996). Highly conductive polypyrrole films on non-conductive substrates. Synth. Methods 83 (3), 197-200. DOI: 10.1016/s0379-6779(97)80079-3
  50. Malinauskas, A. (2001). Chemical deposition of conducting polymers. Polymer 42 (9), 3957-3972: DOI: 10.1016/s0032-3861(00)00800-4
  51. Macasaquit, A. C., & Binag, C. A. (2010). Preparation of conducting polyester textile by in situ polymerization of pyrrole. Philippine J. Sci., 139, 189-196. ISSN: 0031 - 7683
  52. Sparavigna, A. C., & Wolf, R. A. (2008). Atmospheric plasma treatments in converting and textile industries. Lulu Enterprises, Inc, pp. 1-112. ISBN: 9781409211075
  53. Sparavigna, A. (2008). Plasma treatment advantages for textiles. arXiv preprint arXiv:0801.3727.
  54. Wolf, R., & Sparavigna, A. C. (2010). Role of Plasma Surface Treatments on Wetting and Adhesion. Engineering, 2 (6), 397-402. DOI: 10.4236/eng.2010.26052
  55. Garg, S., Hurren, C., & Kaynak, A. (2007). Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synthetic metals, 157 (1), 41-47. DOI: 10.1016/j.synthmet.2006.12.004
  56. Mehmood, T., Kaynak, A., Dai, X. J., Kouzani, A., Magniez, K., de Celis, D. R., Christopher J. Hurren, & du Plessis, J. (2014). Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Materials Chemistry and Physics, 143 (2), 668-675. DOI: 10.1016/j.matchemphys.2013.09.052
  57. Molina, J., Oliveira, F. R., Souto, A. P., Esteves, M. F., Bonastre, J., & Cases, F. (2013). Enhanced adhesion of polypyrrole/PW12O403− hybrid coatings on polyester fabrics. Journal of Applied Polymer Science, 129 (1), 422-433. DOI: 10.1002/app.38652
  58. Sparavigna, A. C., Florio, L., Avloni, J., & Henn, A. (2010). Polypyrrole coated PET fabrics for thermal applications. Materials Sciences and Applications, 1 (04), 253. DOI: 10.4236/msa.2010.14037
  59. Maity, S., Chatterjee, A., Singh, B., & Pal Singh, A. (2014). Polypyrrole based electro-conductive textiles for heat generation. The Journal of The Textile Institute, 105 (8), 887-893. DOI: 10.1080/00405000.2013.861149
  60. Oroumei, A., Tavanai, H., & Morshed, M. (2012). Electrical resistance and heat generation of polypyrrole‐coated polyacrylonitrile nanofibrous and regular fibrous mats. Polymers for Advanced Technologies, 23 (9), 1302-1310. DOI: 10.1002/pat.2049
  61. Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2014, pp. 1-6. DOI: 10.1109/memea.2014.6860033
  62. Tessier, D., Dao, L. H., Zhang, Z., King, M. W., & Guidoin, R. (2000). Polymerization and surface analysis of electrically-conductive polypyrrole on surface-activated polyester fabrics for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 11 (1), 87-99. DOI: 10.1163/156856200743517
  63. Muthukumar, N. & Thilagavathi, G. (2012). Conductive polymer coated textiles for biosignals monitoring. International Journal of Textile and Fashion Technology (IJTFT), 2 (2), 1-9. ISSN: 2250–2378
  64. Liu, Z., & Liu, X.X. (2015). Progress on fabric electrodes used in ECG signals monitoring. Journal of Textile Science and Technology, 1, 110-117. DOI: 10.4236/jtst.2015.13012
  65. Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: a review. Smart Materials and Structures, 23(5), 053001. DOI: 10.1088/0964-1726/23/5/053001
  66. Torsi, L., Pezzuto, M., Siciliano, P., Rella, R., Sabbatini, L., Valli, L., & Zambonin, P. G. (1998) Conducting polymers doped with metallic inclusions: new materials for gas sensors. Sensors Actuators B, 48, 362–7. DOI: 10.1016/s0925-4005(98)00058-6
  67. Rajagopalan, S., Sawan, M., Ghafar-Zadeh, E., Savadogo, O., & Chodavarapu, V. P. (2008). A polypyrrole-based strain sensor dedicated to measure bladder volume in patients with urinary dysfunction. Sensors, 2008, 8(8), 5081-5095; doi:10.3390/s8085081
  68. Jakubiec, B., Marois, Y., Zhang, Z., Roy, R., Sigot-Luizard, M.-F., Dugré, F. J., King, M. W., Dao, L. H., Laroche, G., & Guidoin, R. (1998). In vitro cellular response to polypyrrole‐coated woven polyester fabrics: Potential benefits of electrical conductivity. Journal of Biomedical Materials Research Part A, 41 (4), 519-526. DOI: 10.1002/(SICI)1097-4636(19980915)41:4<519::AID-JBM2>3.0.CO;2-F
  69. Zhang, Z., Roy, R., Dugré, F. J., Tessier, D., & Dao, L. H. (2001). In vitro biocompatibility study of electrically conductive polypyrrole‐coated polyester fabrics. Journal of biomedical materials research, 57 (1), 63-71. DOI: 10.1002/1097-4636(200110)57:1<63::AID-JBM1142>3.0.CO;2-L
  70. Jiang, X., Marois, Y., Traoré, A., Tessier, D., Dao, L. H., Guidoin, R., & Zhang, Z. (2002). Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue engineering, 8 (4), 635-647. DOI: 10.1089/107632702760240553.
  71. Spearman, B. S., Hodge, A. J., Porter, J. L., Hardy, J. G., Davis, Z. D., Xu, T., Zhang, X., Schmidt, C. E., Hamilton, M. C., Lipke, E. A. (2015). Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater. 2015 Dec, 28, 109-20. DOI: 10.1016/j.actbio.2015.09.025
  72. Mandich, N.V. (1994). EMI shielding by electroless plating of ABS plastics. Plating and Surface Finishing, 81 (10), 60-63. ISSN: 0360-3164
  73. Sidhu, A., Reike, J., Michelsen, U., Messinger, R., Habiger, E., & Wolf, J. (1997). Metallization of plastics for shielding, IEEE Int. Symp. Electromagnetic Compatibility, IEEE, Piscataway, New Jersey, USA: IEEE, pp. 102–5. DOI: 10.1109/elmagc.1997.617094
  74. Chung, D. D. L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39 (2), 279-285. DOI: 10.1016/s0008-6223(00)00184-6
  75. Pietranik, M., & Stawski, W. (2004). New Type of Textiles with Shielding Properties. Fibres & Textiles in Eastern Europe, 12 (3), 47.
  76. Wilson, P. F., & Ma, M. T. (1988). Techniques for measuring the electromagnetic shielding effectiveness of materials. II. Near-field source simulation. IEEE Transactions on Electromagnetic Compatibility, 30 (3), 251-259. DOI: 10.1109/15.3303
  77. Wilson, P. F. (1988). A comparison between near-field shielding-effectiveness measurements based on coaxial dipoles and electrically small apertures. IEEE transactions on electromagnetic compatibility, 30 (1), 23-28. DOI: 10.1109/15.19884
  78. Avloni, J., Ouyang, M., Florio, L., Henn, A. R., & Sparavigna, A. (2007). Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20 (3), 241-254. DOI: 10.1177/0892705707076718
  79. Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A. R., & Sparavigna, A. (2008). Polypyrrole-coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles, 38 (1), 55-68. DOI: 10.1177/1528083707087834
  80. Avloni, J., Florio, L., Henn, A. R., Lau, R., Ouyang, M., & Sparavigna, A. (2006). Electromagnetic shielding with polypyrrole-coated fabrics. arXiv preprint cond-mat/0608664.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue August 2020

Volume 9, August 2020

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper