Dietary Phospholipids and Phytostrerols: A Review on Some Nigerian Vegetable Oils

Dietary Phospholipids and Phytostrerols: A Review on Some Nigerian Vegetable Oils

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): M. O. Aremu, Hashim Ibrahim

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1436 166 456 94-102 Volume 6 - Sep 2017

Abstract

Dietary phospholipids and phytosterols have proven to be potential sources of bioactive lipids with widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein function. Due to their biological and physicochemical properties, they are important in human nutrition. The efficient separation and accurate quantification of phospholipids and phytosterols can be achieved with high-performance liquid chromatography–evaporative light scattering detection (HPLC-ELSD) and gas chromatography (GC) often combined with mass spectrometry respectively. The phospholipid and phytosterol compositions of some Nigerian vegetable oils were reviewed. From the literature, the phospholipid concentrations (mg/100) of phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, lysophosphatidyl choline, phosphatidyl inositol and phosphatidic acid are in the range of 2.60 – 1168.00, 1.13 – 558.00, 0.10 – 336.00, 0.72 – 596.00, 1.01 – 611.00 and 9.24 – 94.06, respectively. Total phospholipids range from 14.30 mg/100g in Ethiopian pepper to 2040.00 mg/100g in cooked groundnut. The values of cholesterol, choslestanol, ergosterol, campesterol, stigmesterol, 5 – avenasterol and sitosterol range between 1.6e-5 – 9.28, 4.80e-6 – 2.28, 4.59e-4 – 30.20, 9.39e-3 – 103.00, 1.24 – 45.60, 5.62e-3 – 53.50 and 17.21 – 351.00, respectively for the vegetable oils under review. Malaba spinach records the highest total phytosterols content (442.91 mg/100g), followed by big alligator pepper (369. 34 mg/100g) while Ethiopian pepper contains the least total phytosterols of 23.82 mg/100g. The results of this reviewed work indicate that Nigerian vegetable oils have potentials in finding application either in food industry as emulsifiers, emulsion stabilizers or industrial purposes such as biomedical applications, cosmetics and even drug delivery.

Keywords

Phosphlipids, Phytosterols, Vegetables, Oils, Nigeria

References

  1. Bloom, D. E., Cafiero, E. T., Jane-Llopis, E., Abrahams-Gessel, S., Bloom, L. R., Fathima, S., Feigl, A. B., Gaziano, T., Mowafi, M., Pandya, A., Prettner, K., Rosenberg, L., Seligman, B., Stein, A. Z. and Weinstein, C. (2011). The Global Economic Burden of Noncommunicable Diseases. Geneva, Switzerland: World Economic Forum.
  2. Ross, R. (1999). Atherosclerosis—An inflammatory disease. N. Engl. J. Med., 340: 115–126.
  3. Tabas, I., Williams, K. J. and Boren, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation, 116: 1832–1844.
  4. Williams, K. J. and Tabas, I. (1995). The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol., 15: 551–561.
  5. Davis, R. A. (1997). Evolution of processes and regulators of lipoprotein synthesis: From birds to mammals. J. Nutr., 127: 795S–800S.
  6. Fielding, C. J. and Fielding, P. E. (1995). Molecular physiology of reverse cholesterol transport. J. Lipid Res., 36: 211–228.
  7. Singh, I. M., Shishehbor, M. H. and Ansell, B. J. (2007). High-density lipoprotein as a therapeutic target: A systematic review. JAMA, 298: 786–798.
  8. NCEP (2001). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA, 285: 2486–2497.
  9. Fernandez, M. L. and Calle, M. (2010). Revisiting dietary cholesterol recommendations: Does the evidence support a limit of 300 mg/d? Curr. Atheroscler. Rep., 12: 377–383.
  10. Jing, L., Xuling, W., Ting, Z., Chunling, W., Zhenjun, H., Xiang, L. and Yihui, D. (2015). A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm., Sci., 10: 81 – 98.
  11. Dowhan, W. (1997). Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu. Rev. Biochem., 66: 199–232.
  12. María, S. G., Liliana, B. O. and Nidia, N. G. (2011). Nutritional deficiencies and phospholipid metabolism. Int. J. Mol. Sci., 12: 2408-2433
  13. Christopher, N. B. (2015). Egg phospholipids and cardiovascular health. Nutrients, 7: 2731-2747.
  14. Trautwein, E. A. and Demonty, I. (2007). Phytosterols: natural compounds with established and emerging health benefits. DOSSIER, OCL14 (5): 259 – 266.
  15. Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J. and Lampi, A. M. (2000). Plant sterols: biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric, 80: 939-66.
  16. Normén, L., Johnsson, M., Andersson, H., Van Gameren, Y. and Dutta, P. (1999). Plant sterols in vegetables and fruits commonly consumed in Sweden. Eur. J. Nutr., 38: 84-89.
  17. Normen, L., Bryngelsson, S. and Johnsson, M. (2002). The phytosterol content of some cereal foods commonly consumed in Sweden and in the Netherlands. J. Food Compost. Anal., 15: 693-704.
  18. Ling, W. H. and Jones, P. J. (1995). Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sci., 57: 195-206.
  19. Ostlund Jr., R. E., Mcgill, J. B. and Zeng, C. M. (2002). Gastrointestinal absorption and plasma kinetics of soy delta (5)-phytosterols and phytostanols in humans. Am. J. Physiol. Endocrinol. Metab. 282: E911-E916.
  20. Normén, A. L., Brants, H. A. M., Voorrips, L. E., Andersson, N. A., Van den Brandt, P. A. and Goldbohm, R. A. (2001). Plant sterol intakes and colorectal cancer risk in the Netherlands Cohort Study on Diet and Cancer. Am. J. Clin. Nutr.,74: 141-148.
  21. Stillway, L. W. and Harmon, S. J. (1980). A procedure for detecting phosphonolipids on thin-layer chromatograms. Journal of Lipid Research, 21(8): 1141–1143.
  22. Jeffrey, B. F. and Sprecher, H. (1982). Unidimensional thin-layer chromatography of phospholipids on boric acid–impregnated plates. Journal of Lipid Research, 23: 660–663.
  23. Safonova, E. F., Nazarova, A. A., Selemenev, V. F., Brezhneva, T. A. and Slivkin, A. I. (2002). Selecting optimum parameters for the TLC separation of phospholipids. Pharmaceutical Chemistry Journal, 36(4): 206–208.
  24. Silversand, C. and Haux, C. (1997). Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lipids. Journal of Chromatography B, 703: 7–14.
  25. Helmerich, G. and Koehler, P. (2003). Comparison of methods for the quantitative determination of phospholipids in lecithins and flour improvers. Journal of Agricultural and Food Chemistry, 51(23): 6645 – 6651.
  26. Szucs, R., Verleysen, K., Duchateau, G. S. M. J. E, Sandra, P. and Vandeginste, B. G. M. (1996). Analysis of phospholipids in lecithins comparison between micellar electrokinetic chromatography and high-performance liquid chromatography. Journal of Chromatography A, 738(1): 25 – 29.
  27. Christie, W. W. (1996). Separation of phospholipid classes by high-performance liquid chromatography. In Advances in Lipid Methodology—Three; Oily Press: Dundee, UK.
  28. Avalli, A. and Contarini, G. (2005). Determination of phospholipids in dairy products by SPE/HPLC/ELSD. Journal of Chromatography A, 1071(1–2): 185–190.
  29. Ruiz-Gutierrez, V. and Perez-Camino, M. C. (2000). Update on solid-phase extraction for the analysis of lipid classes and related compounds. Journal of Chromatography A, 885(1–2): 321–341.
  30. Christie, W. W. (1992). Advances in Lipid Methodology; Oily Press: Dundee, UK.
  31. Careri, M., Mangia, A. and Masci, M. (1998). Overview of the applications of liquid chromatography–mass spectrometry interfacing systems in food analysis: naturally occurring substances in food. Journal of Chromatography A, 794: 263–297.
  32. Boyd, L. C., Drye, N. C. and Hansen, A. P. (1999). Isolation and characterization of whey phospholipids. Journal of Dairy Science, 82(12): 2550–2557.
  33. Kaufmann, A., Ryser, B. and Suter, B. (2001). HPLC with evaporative light scattering detection for the determination of polar compounds in used frying oils. European Food Research and Technology, 213: 372 – 376.
  34. Hèron, S., Dreux, M. and Tchapla, A. (2004). Post-column addition as a method of controlling triacylglycerol response coefficient of an evaporative light scattering detector in liquid chromatography–evaporative light-scattering detection. Journal of Chromatography A, 1035: 221 – 225.
  35. Heupel, R. C. (1989). Isolation and primary characterization of sterols. In: Analysis of Sterols and Other Biologically Significant Steroids. (W.D. Nes and E.J. Parish (eds), Academic Press, Inc, San Diego, CA) pp. 1-32.
  36. Aitzetmüller, K., Brühl, L. and Fiebig, H. J. (1998). Analysis of sterol content and composition in fats and oils by capillary-gas liquid chromatography using an internal standard. Comments on the German sterol method. Fett/Lipid, 100: 429 – 435.
  37. Moreau, R. A., Whitaker, B. D. and Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res., 41: 457 – 500.
  38. Abidi, S. L. (2001). Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A., 935: 173 – 201.
  39. AOAC (2010). Official Method 994.10 Cholesterol in foods, and Approved Method 2007.03 Campesterol, stigmasterol, and beta-sitosterol in saw palmetto raw materials and dietary supplements. In: Official Methods of Analysis of AOAC International, 18th Edition (W. Horwitz and G. Latimer (eds), AOAC International, Gaithersburg, MD).
  40. AOCS (2009). Official Method Ch 6-91 Determination of the composition of the sterol fraction of animal and vegetable oils and fats by TLC and capillary GLC. In: Official Methods and Recommended Practices of the AOCS, 6th Edition, D. Firestone(ed.), AOCS, Urbana, IL.
  41. ISO (1999). International Organization for Standardization (ISO) 12228:1999 Animal and vegetable fats and oils-determination of individual and total sterols content-gas chromatographic method. Geneva, Switzerland (1999).
  42. Laakso, P. (2005). Analysis of sterols from various food matrices. Eur. J. Lipid Sci. Technol., 107: 402 – 410.
  43. Sherman, C. B., Peterson, S. J. and Frishman, W. H. (2010). Apolipoprotein A-I mimetic peptides: A potential new therapy for the prevention of atherosclerosis. Cardiology in Review, 18(3): 141 – 147.
  44. Praticò, D. and Dogné, J. M. 2009). Vascular biology of eicosanoids and atherogenesis. Expert Review of Cardiovascular Therapy, 7(9): 1079 – 1089.
  45. Eckhardt, E. R., Wang, D. Q., Donovan, J. M. and Carey, M. C. J. (2002). Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology, 122(4): 948 – 956.
  46. Eckhardt, E. R., Wang, D. Q. H., Donovan, J. M. and Carey, M. C. (2001). Dietary sphingomyelin significantly inhibits intestinal cholesterol absorption by lowering thermodynamic activity of cholesterol in bile salt mixed micellar solution. Gastroenterology, 120: A679 – A680.
  47. Pepeu, G., Pepeu, I. M. and Amaducci, L. (1996). A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacology Research, 33: 73 – 80.
  48. Saito, H. and Ishihara, K. (1997). Antioxidant activity and active sites of phospholipids as antioxidants. Journal of the American Oil Chemists Society, 74: 1531–1536.
  49. Sprong, R. C., Hulstein, M. F. E. and Van der Meer, R. (2002). Bovine milk fat components inhibit foodborne pathogens. International Dairy Journal, 12: 209 – 215.
  50. Vesper, H., Schmelz, E. M., Nikolova-Karakashian, M. N., Dillehay, D. L., Lynch, D. V. and Merrill, A. H. (1999). Sphingolipids in food and the emerging importance of sphingolipids to nutrition. Journal of Nutrition, 129: 1239 – 1250.
  51. Adeyeye, E. I. and Agesin, M. O. (2012). Effects of roasting and cooking on the lipid composition of raw groundnut (Arachis hypogaea) seeds: dietary implications. Elixir Food Science 42: 6257-6266.
  52. Canty, D. J. and Zeisel, S. H. (1994). Lecithin and choline in human health and disease. Nutr Rev., 52: 327 – 339.
  53. Buko, V., Lukivskaya, O. and Nikitin, V. (1996). Hepatic and pancreatic effects of polyenoylphosphatidylcholine in rats with alloxan-induced diabetes. Cell Biochem. Funct., 14: 131 – 137.
  54. Deeba, F., Tahseen, H. N., Sharad, K. S., Ahmad, N., Akhtar, S., Saleemuddin, M. and Mohammad, O. (2005). Phospholipid diversity: Correlation with membrane-membrane fusion events. Biochim. Biophys. Acta, 1669: 170 – 181.
  55. Emoto, K., Kobayashi, T., Yamaji, A., Aizawa, H., Yahara, I., Inoue, K. and Umeda, M. (1996). Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc. Natl. Acad. Sci., 93: 12867–12872.
  56. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E. and Ohsumi, M. (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408: 488 – 492.
  57. Emoto, K., Toyama-Sorimachi, N., Karasuyama, H., Inoue, K. and Umeda, M. (1997). Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res., 232: 430 – 434.
  58. Svennerholm, L. (1968). Distribution and fatty acid composition of normal human brain. J. Lipid Res., 9: 570–579.
  59. Akbar, M., Calderon, F., Wen, Z. and Kim, H. Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci., 102: 10858–10863.
  60. Huang, B. X., Akbar, M., Kevala, K. and Kim, H. Y. (2011). Phosphatidylserine is a critical modulator for Akt activation. J. Cell Biol., 192: 979 – 992.
  61. Kim, H. Y., Akbar, M., Lau, A. and Edsall, L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3): Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem., 275: 35215 – 35223.
  62. Adeyeye, E. I. (2011). Levels of fatty acids, phospholipids and sterols in the skin and muscle of tilapia (Oreochromis niloticus) fish. La Rivista Italiana Delle Sostanze Grasse, LXXXVIII 88: 46-55.
  63. Adeyeye, E. I. and Oyarekua, M. A. (2015). Chemical composition of the leaves of tea bush (Ocimum gratissium L.). Bangladesh J. Sci. Ind. Res., 50(2): 93-108.
  64. Oko, O. J., Aremu, M. O., Odoh, R., Magomya, A. M. and Abutu, D. (2015). A comparative assessment of the fatty acid and phospholipid composition of Irvingia gabonensis (African wild mango) and Citrullus lanatus (Water Melon) seed oils. Journal of Natural Sciences Research, 5(18): 1 – 7.
  65. Adesina, A. J. and Adefemi, S. O. (2017). Lipid composition of Basella alba and Basella rubra leaves consumed in South-Western Nigeria: Nutritional implications. Bangladesh J. Sci. Ind. Res., 52(2): 125-134.
  66. Ajayi, F. A., Aremu, M. O., Mohammed, Y. Madu, P. C., Atolaiye, B. O., Audu, S. S. and Opaluwa, O. D. (2014). Effect of processing on fatty acid and phospholipid compositions of harms (Brachystegia eurycoma) seed grown in Nigeria. Chemical and Process Engineering Research, 22: 18 – 25.
  67. Aremu, M. O., Ibrahim, H. and Aremu, S. O. (2016). Lipid composition of black variety of raw and boiled tigernut (Cyperus esculentus L.) grown in North-East Nigeria. Pak. J. Nutr., 15(5): 427 - 438
  68. Adeyeye, E. I., Adesina, A. J. and Fagbohun E. D. (2014). Lipid composition of Afromomum melegueta, Zingiber officinale, Afromomum melegueta and Xylopic aethiopica. BioMed Research (Food & Nutrition Research), 1(1):1-16.
  69. Adesina, A. J. and Gbolagade, Y. A. (2016). Lipid compositions of three local spices commonly consumed in Ekiti state, Nigeria. The Pharmaceutical and Chemical Journal, 3(2): 45-56.
  70. Aremu, M. O. Haruna A., Oko O. J. and Ortutu, S. C. (2017). Fatty acid, phospholipid and sterol compositions of breadfruit (Artocarpus altilis) and wonderful kola (Buchholzia aoriacea) seeds. Int. J. Sci., 6(04): 116 - 123.
  71. Adeyeye, E. I., Adesina, A. J., Fasakin, A. O. and Akinwumi, O. A. (2015). The relationship in the lipid composition in raw, steeped and germinated wheat (Triticum durum) grains. Journal of Chemical, Biological and Physical Sciences, A5(4); 3607-3628.
  72. Adewale, A. and Rotimi, A. O. (2012). Analysis of the lipids and molecular speciation of the triacylglycerol of the oils of Luffa cylindrica and Adenopus breviflorus, CyTA - Journal of Food, 10(4): 313-320.
  73. Jason, T., W., Khai. T., Grant, N. P., Alvin, C. C., Karmin, O. and Patrick, C. C. (1998). Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells. The Journal of Biological Chemistry, 273(12): 6830 – 6836.
  74. Matsumoto, T., Kobayashi, T. and Kamata, K. (2007). Role of lysophosphatidylcholine (LPC) in atherosclerosis. Current Medicinal Chemistry, 14(30): 3209-20.
  75. Corvera, S., D'Arrigo, A. and Stenmark, H. (1999). Phosphoinositides in membrane traffic. Curr. Opin. Cell Biol. 11: 460 – 465.
  76. Gillooly, J. D., Simonsen, A. and Stenmarki, H. (2001). Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J., 355: 249 – 258 .
  77. Abd-El-Haliem, A. M. and Joosten, M. H. A. J. (2017). Plant phosphatidylinositol-specific phospholipase C at the center of plant innate immunity. J. Integr. Plant Biol., 59: 164-179.
  78. Wang, X., Devaiah, S. P. Zhang, W. and Welti, R. (2006). Signaling functions of phosphatidic acid. Prog Lipid Res., 45(3): 250 – 78.
  79. Lefévre, T. and Subirade, M. (2000). Interaction of B-lactoglobulin with phospholipid bilayers: a molecular level elucidation as revealed by infrared spectroscopy. International Journal of Biological Macromolecules, 28(1): 59–67.
  80. Gunstone, F. D. (2001). Chemical reactions of fatty acids with special reference to the carboxyl group. European Journal of Lipid Science and Technology, 103(5): 307–314.
  81. Schneider, M. (2001). Phospholipids for functional food. European Journal of Lipid Science and Technology, 103(2): 98–101.
  82. Gabizon, A., Goren, D., Horowitz, T., Tzemach, A., Losos, A. and Siegal, T. (1997). Long-circulating liposomes for drug delivery in cancer therapy: A review of biodistribution in tumor-bearing animals. Advanced Drug Delivery Reviews, 24: 337–344.
  83. Uhumwangho, M. U. and Okor, R. S. (2005). Current trends in the production and biomedical applications of liposomes: A review. Journal of Medicine and Biomedical Research, 4: 9–21.
  84. Jeffrey, S. C., Alvin, K., Elaine, W., Rosanna, W. S. C. and Sally, T. (2010). Dietary phospholipids and intestinal cholesterol absorption. Nutrients, 2: 116-127.
  85. Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T. A. and Paoletti, R. (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clinic Proceedings, 78: 965 – 78.
  86. Law, M. (2000). Plant sterol and stanol margarines and health. British Medical Journal, 320: 861 - 864.
  87. Demonty, I., Ras, R. T. and Van der Knaap, H. C. M. (2009). Continuous dose response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. Journal of Nutrition, 139: 271 – 84.
  88. Abumweis, S. S., Barake, R. and Jones, P. J. H. (2008). Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food and Nutrition Research, 52: 10.3402/fnr.v52i0.1811.
  89. Musa-Veloso, K., Poon, T. H., Elliot, J. A. and Chung, C. (2011). A comparison of the LDL cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukotrienes and Essential Fatty Acids, 85: 9 – 28.
  90. Hu, F.B. and Willett, W. C. (2002). Optimal diets for prevention of coronary heart disease. The Journal of the American Medical Association, 288: 2569 – 78.
  91. Mihaylova, B., Emberson, J. and Blackwell, L. (2012). The effects of lowering LDL cholesterol with stating therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet, 380: 581 – 90.
  92. NCEP ATP III (2002). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III).
  93. Lichtenstein, A., Appel, L. and Brands, M. (2006). Diet and life style recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation, 114: 82 – 96.
  94. Reiner, Z., Catapano, A. L. and De Backer, G. (2011). ESC/EAS Guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). European Heart Journal, 32: 1769 – 818.
  95. Trautwein, E. A., Duchateau, G. S. M. J., Lin, Y., Mel’nikov, S. M., Molhuizen, H. O. F. and Ntanios, F. Y. (2003). Proposed mechanisms of cholesterol-lowering action of plant sterols. European Journal of Lipid Science and Technology, 105: 171 – 85.
  96. Law, M. R., Wald, N. J. and Thompson, S. G. (1994). By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ, 308: 367 – 373.
  97. Ogunbusola, E. M., Fagbemi, T. N. and Osundahunsi, O. F. (2017). Fatty acid characterisation, sterol composition and spectroscopic analysis of selected Cucurbitaceae seed oils. International Food Research Journal, 24(2): 696-702.
  98. Ogungbenle, H. N. and Sanusi, D. S. (2015). Extraction, physicochemical, phytosterols and fatty acid of Celosia spicata leaves. British Journal of Research, 2(1): 09 – 20.
  99. Akintayo, E. T. and Bayer, E. (2002). Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils. Bioresource Technology, 85: 95–97.
  100. Bouic, P. J. (2001). The role of phytosterols and phytosterolins in immune modulation: A review of the past 10 years. Curr. Opin. Clin. Nutr. Metab. Care, 4: 471-475.
  101. Bouic, P. J., Clark, A., Brittle, W., Lamprecht, J. H., Freestone, M. and Liebenberg, R. W. (2001). Plant sterol/sterolin supplement used in a cohort of South African HIV-infected patients-effects on immunological and virological surrogate markers. S. Afr. Med. J., 91: 848 – 850.
  102. Homma, Y., Ikeda, I., Ishikawa, T., Tateno, M., Sugano, M. and Nakamura, H. (2003). A randomized, placebo-controlled trial: Decrease in plasma low-density lipoprotein cholesterol, apolipoprotein B, cholesteryl ester transfer protein, and oxidized low-density lipoprotein by plant ptanol pster-containing spread. Nutrition, 19(4): 369 – 374.
  103. Wang, T., Hicks, K. B. and Moreau, R. (2002). Antioxidant activity of phytosterols, oryzanol and other phytosterols conjugates. Journal of the American Oil Chemists Society, 79: 1201 – 1206.
  104. Jayaraj, P. A., Tovey, F. I. and Hobsley, M. (2003). Duodenal ulcer prevalence: Research into the nature of possible protective dietary lipids. Phytother. Res., 17: 391 – 398.
  105. Li, H., Matsunaga, S. and Fusetani, N. (2005). A New 9, 11-secosterol, stellettasterol from a marine sponge Stelletta sp. Cellular and Molecular Life Sciences, 50(8): 771 – 773.
  106. Awad, A. B., Roy, R. and Fink, C. S. (2003). ß-sitosterol, A plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncology Reports, 10: 497 – 500.
  107. Bennani, H., Drissi, A., Giton, F., Kheuang, L., Fiet, J. and Adlouni, A. (2007). Antiproliferative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines. Cancer Detect. Prev., 31(1): 64 – 69.
  108. Wilt, T., Ishani, A., MacDonald, R., Stark, G., Mulrow, C. and Lau, J. (2007). Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database of Systematic Reviews, Issue 2.
  109. Schabath, M. B., Hernandez, L. M., Wu, X. Pillow, P. C. and Spitz, M. R. (2005). Dietary phytoestrogens and lung cancer risk. JAMA, 294(12): 1493 – 1504.
  110. De Stefani, E., Boffetta, P., Ronco, A. L., Brennan, P., Deneo-Pellegrini, H., Carzoglio, J. C. and Mendilaharsu, M. (2000a). Plant sterols and risk of stomach cancer: A case-control study in Uruguay. Nutr. Cancer, 37: 140 – 144.
  111. De Stefani, E., Brennan, P., Boffetta, P., Ronco, A. L., Mendilaharsu, M. and Deneo-Pellegrini, H. (2000b). Vegetables, fruits, related dietary antioxidants, and risk of squamous cell carcinoma of the esophagus: A case-control study in Uruguay. Nutr. Cancer, 38: 23 – 29.
  112. Mccann, S. E., Freudenheim, J. L., Marshall, J. R., Brasure, J. R., Swanson, M. K. and Graham, S. (2000). Diet in the epidemiology of endometrial cancer in Western New York (United States). Cancer Causes Control, 11: 965 – 974.
  113. Mccann, S. E., Freudenheim, J. L., Marshall, J. R. and Graham, S. (2003). Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J. Nutr., 133: 1937 – 1942.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue July 2019

Volume 8, July 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper