General Relativistic Gravity Machine using Electromagneto-Torsion Field

General Relativistic Gravity Machine using Electromagneto-Torsion Field

Loading document ...
Loading page ...


Author(s): Takaaki Musha, Mario J.Pinheiro

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1562 189 649 15-23 Volume 7 - Mar 2018


Some field propulsion systems are based on the solution of General Relativity Theory and are related to the connection between gravity and electromagnetic field. For example, Robert Forward proposed a gravity machine working according to the Einstein’s General Relativity Theory, which requires ultra dense matter with the density of a dwarf star to produce useful thrust, but the proposed theoretical scheme cannot be realized by conventional technologies. The authors propose several concepts of a gravity machine utilizing an intense electromagnetic field that produces sufficient thrust to propel the spaceship, in accordance with Einstein’s General Relativity Theory.


  1. Crawford, I. A., Interstellar Travel: A Review for Astronomers, QJRAS, Vol. 31, 1990, pp.377-400
  2. Hein, A.M., "Evaluation of Technological-Social and Political Projections for the Next 100-300 Years and the Implications for an Interstellar Mission". Journal of the British Interplanetary Society. 33 (09/10), 2012, pp. 330–340.
  3. Long, Kelvin (2012). Deep Space Propulsion: A Roadmap to Interstellar Flight. Springer. ISBN 978-1-4614-0606-8.
  4. Mallove, Eugene (1989). The Starflight Handbook. John Wiley & Sons, Inc. ISBN 0-471-61912-4.
  5. Forward, R.L., Antigravity, Proceeding of the IRE, 1961, pp.1442.
  6. Forward, R.L., Guidelines to Antigravity, American Journal of Physics, 37, 1963, pp.166-170.
  7. Woodward, James (2013). Making Starships and Stargates: The Science of Interstellar Transport and Absurdly Benign Wormholes. Springer. ISBN 978-1-4614-5622-3.
  8. Zubrin, Robert (1999). Entering Space: Creating a Spacefaring Civilization. Tarcher / Putnam. ISBN 1-58542-036-0.
  9. Harris E.G., Analogy between general relativity and electromagnetism for slowly moving particle in weak gravitational fields, American Journal of Physics, 59 (5), 1991,pp.421-425.
  10. Braginsky, V.B., Caves, C.M., Thorne, K.S., Laboratory experiments to test relativistic gravity, Physical Review D, Vol.15, No.8, 1977, pp.2047-2068
  11. Dirac. P.A.M., Is there an Aether?, Nature, vol.168, 1951, pp.906-907.
  12. Dirac. P.A.M., Is there an Aether?, Nature, vol.169, 1952, pp.702.
  13. Sinha, K.P., Sivaram, C., Sudarshan, E.C.G., Aether as a superfluid state of particle-antiparticle pairs, Found. Phys., Vol.6,No.1, 1976, pp.65-70.
  14. Sinha, K.P., Sivaram, C., Sudarshan, E.C.G., The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models, Found. Phys., Vol.6,No.6, 1976, pp.717-726.
  15. Sinha, K.P., Sudarshan, E.C.G., The superfluid as a source of all interactions, Found. Phys., vol.8, 1978, pp.823-831.
  16. Musha, T., Possibility of Antigravity Propulsion by Gravitational Vortex, Proceedings of the 36th Conference on Aerospace Propulsion, JSASS, 1996, pp.321-326 (Japanese).
  17. Pinheiro, M.J., Electromagnetotoroid Structure in Propulsion and Astrophysics, DFIST, 2009, pp.1-7.
  18. Martins, A. A.; Pinheiro, M., Fluidic Electrodynamics: an approach to electromagnetic propulsion, J. Phys. Fluids 21, 2009, 097103.
  19. Martins, A. A.; Pinheiro, M. J., The connection between inertial forces and the vector potential, AIP Conference Proceedings 880, 2007, 1189.
  20. Feigel, A., Quantum Vacuum Contribution to the Momentum of Dielectric Media Phys. Rev. Lett. 92(2) , 2004, 020404-1.
  21. Martins, A. A.; Pinheiro, M. J., On the electromagnetic origin of inertia and inertial mass, Int. J. Theo. Phys. 47 (10), 2008 , 2706-2715.
  22. Harpaz, A.; Soker, N., Radiation from a Uniformly Accelerated Charge, Gen. Rel. Grav. 30 (8), 1998, 1217-1227.
  23. Shockley, W.; James, R. P., A “Try Simplest Cases” Resolution of the Abraham Minkowsky Controversy on Electromagnetic Momentum in Matter, Science, 156 (3747), 1967 , 542.
  24. Huggins, Elisha, R., Exact Magnus-Force Formula for Three-Dimensional Fluid-Core Vortices, Phys. Rev. A 1 (2) 1970 , 327-331.
  25. Brito, Hector H., Experimental status of thrusting by electromagnetic inertia manipulation, Acta Astronautica 54, 2004 , 547-558.
  26. Cleveland, Blair, M., Electromagnetic propulsion via a vacuum-interactance push Electric Spacecraft 24, 1996, 6-16.
  27. Pinheiro, Mario J., On Newton’s third law and its symmetry-breaking effects, Physica Scripta 84 (5), 2011, 055004.
  28. Hedenström, Anders, A General Law for animal Locomotion, TRENDS in Ecology and Evolution 19(5) , 2004 , 217-219.
  29. Robertson, G. A.; Pinheiro, M., Vortex Formation in the Wake of Dark Matter Propulsion, J. Physics Procedia, 20, 2011 , 6-23.
  30. Murad, P.A., Its all gravity, Space Technology and Applications International Forum (STAIF-2003). AIP conference proceedings 654, NY, American Institute of Physics, 2003, pp.932-939.
  31. Murad, P.A., A proposed model for capturing gravitational spin anomalies, Space Technology and Application International Forum (STAIF-2004), AIP conference proceedings 699, NY, American Institute of Physics, 2004, pp.1098-1105.
  32. Pinheiro, Mario J., Some effects of topological torsion currents on spacecraft dynamics and the flyby anomaly, Monthly Notices of the Royal Astronomical Society, Volume 461, Issue 4, 1 October 2016, Pages 3948–3953
  33. Pinheiro, Mario J., A reformulation of mechanics and electrodynamics, Heliyon 3 (2017) e00365

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2021

Volume 10, April 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper