Contribution of Growth Components on Relative, Plant, Crop and Tuber Growth Rate of Nine Potato Cultivars in Southern Italy

Contribution of Growth Components on Relative, Plant, Crop and Tuber Growth Rate of Nine Potato Cultivars in Southern Italy

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Celestino Ruggiero, Salvatore Ascione, Cosimo Vitale

Download Full PDF Read Complete Article

935 1572 1-11 Volume 2 - Jun 2013

Abstract

Nine potato cultivars were field-grown to determine relative growth rate (RGR), crop growth rate (CGR) and tuber growth rate (TGR) in order to ascertain which of these parameters, namely leaf area ratio (LAR), specific leaf area (SLA), leaf mass ratio (LMR), leaf area index (LAI) and net assimilation rate (NAR), are most closely correlated with the differences among the cultivars in RGR, CGR and TGR. Nine samplings were carried, for short-cycle, and 11 for long-cycle cultivars, every seven days. The relations between all the indexes considered for all cultivars were analysed with simple linear correlation, separately for weekly data, every four and eight weeks. The data were also subjected to multivariate analysis with the three-stage least squares estimation method. Relations between RGR, CGR and TGR, and LAR, LMR, SLA, LAI and NAR, varied according to the length of the measurement interval and analytical method employed. Based on simple correlation analysis for seven-day periods, RGR CGR and TGR always proved closely and positively correlated with values of NAR, less so with LAR and LMR, and still less with LAI, and only slightly correlated with SLA. For four-week intervals, correlation with NAR appeared weak and for eight-week intervals even negative, while the relation with LAR and LAI increased. From multivariate analysis it emerged that the predominant factor affecting RGR was LAR which, together with LAI, negatively conditions NAR. Upon CGR and TGR an important role is played by LAI which directly and positively affects CGR and TGR, and negatively NAR. Time always showed a negative effect on NAR and positive on RGR and CGR, while LAR had a negative effect on NAR, CGR and TGR.In conclusion, for short periods the differences between cultivars in RGR, CGR and TGR appear chiefly explained by variations in NAR. For long periods and considering the relations among the various traits evidenced by multivariate analysis, the importance of NAR appears less marked, while the morphological traits, namely LAR in determining RGR and LAI for CGR and TGR, assume greater importance.

Keywords

potato, biomass allocation, growth analysis, RGR, CGR, TGR, NAR, LAR, LAI, LMR, SLA

References

  1. Van der Zaag, D.E. and Doornbos, J.H. (1987) Potato Res., 30, 551-568
  2. Lambers, H. and Poorter, H. (1992) Adv. Ecol. Res, 23, 187-261
  3. Lambers, H, Chapin III, F.S., Pons, T.L. (1998) Plant Physiological Ecology. Springer, New York, New York, USA
  4. Zając, T., Grzesiak, S., Kuling, B., Poláček, M. 2005. Acta Physiol. Plant., 27, 549-558
  5. Tekaling, T. and Hammes, P. S. (2005) Sci. Hort., 105, 13-27
  6. Hahn, S.H. (1977) In: Alvin R.T. and Kozlowski T.T., Editors,Encyclopedia of Tropical Crops, Academic Press, New York,237-248
  7. Agriculture, Food and Rural Development Department. 2005 Botany of the potato plant. Available on-line at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp9547 Accessed on 17 March 2005
  8. Burton, W.G. (1972) In: Rees A.R.,Cockshull K.E., Hand D.W. and Hurd G.R. (eds). The Crop Processes in Controlled Environments. Academic Press, Inc., London, 217-233
  9. Epstein, E. and Grand, W. J., (1973) Agron. J., 65, 400-404
  10. Ewing, E.E. (1981) Am. Potato J., 58, 31-49
  11. Dawes, D. S., Dwelle, R. B., Kleinkopf, G. E., and Steinhorst (1983) R. K. Idaho Agric. Exp. Stat. Res., pp 717
  12. Ezekiel, R. (1990) Indian J. Plant Physiol., 13, 136-140
  13. Kooman, P.L., Fahem, M.,P. Tegera, P. and Haverkort A.J. (1996) Eur. J. of Agron., 5, 207-217
  14. van Heemst, H.D.J. (1986) Potato Res., 29, 55-66
  15. Ingram, K.T; and McCloud, D,E, (1984) Crop Sci., 24, 21-27
  16. Demagante, A.L. and Vander Zaag, P. (1988) Potato Res.,31, 73-83
  17. Midmore, D.J.(1990) Potato Res., 33, 293-294
  18. Çaliskan, M. E., Sarihan, E., Isler, N. and Gunel, E. (1999)
  19. Sorrento, Italy, May, 2-7, 371-372
  20. Borrego, F., Fernandez, J. M., Lopez, A., Parga V. M
  21. Murillo, M., Carvajal, A. (2000) Agronomia Mesoamericana, 11, 145-149
  22. Gardner, F.P., Pearce, R.B. and Mitchell, R.L. (1985) In: Physiology of Crop Plants. Iowa State Univ. press, USA, 186-208
  23. Nečas, J. (1965) Biologia Plantarum 7, 180-193
  24. Khurana, S.C. and McLaren, J.S. (1982) Potato Res., 25, 329-342
  25. Manrique, L.A. (1989) Am. Potato J., 66, 277-291
  26. Poorter, H. and Remekes, C. (1990) Oecologia, 83, 553-559
  27. Atkin, O.K., Botman, B. and Lambers, H. (1996) Plant Cell Environ., 19, 1324-1330
  28. Galmés, J., Cifre, J., Medrano, I. and Flexas, J. (2005) Oecologia 145, 21-31
  29. Garnier, E. and Freijsen, A. (1994) In Roy, J. and E. Garnier (eds.). A whole plant perspective on carbon-nitrogen interactions: 267–292. SPB Academic. The Hague
  30. Ascione, S., Lombardi, P. and Ruggiero, C.(1996) Riv. di Agron., 30, 594-606.
  31. Poorter, H. and Van der Werf, A. (1998) H. Lambers, H. Poorter and M. M. I. van Vuren (eds.) Backhuys Publishers, Leiden, 309-336
  32. Poorter, H., Garnier, E. (1999) In Handbook of Functional
  33. Plant Ecology Eds. F. Pugnaire and F. Valladares, 82-120. Marcel Dekker Inc., New York
  34. Ruggiero C., Ascione S., Punzo A. and Vitale C. (2012) J. of Crop Sci., 3, 57-63
  35. Gordon, R., Brown, D.M., and Dixon, M.A. (1997) Potato research, 40, 251-256
  36. Boyd, N.S., Gordon, R. and Martin, R.C.(2002) Potato Research, 45, 117-129
  37. Kruger, E.L. and Volin, J.C. (2006) Funct Plant Biol, 33, 421-429
  38. Radford, P.J. (1967) Crop Sci. 7, 171-175
  39. Evans, G.C (1972) The quantitative analysis of plant growth. University of California Press, Berkeley
  40. Hunt, R. (1982) Basic Growth Analysis. Unwin Hyman Ltd, London, pp 112
  41. Wooldridge, J.M. (2002) Econometric Analysis of Cross Section and Panel Data. Cambridge, MA, MIT Press
  42. Villar, R, Maraňòn, T, Quero, J. L., Panadero, P., Arenas, F. and Lambers, H. (2005) Plant and Soil 272, 11-27
  43. Sarkar, R.K. and Pal, P.K. (2005) Ind. J. Agric.Sci., 75,143-146
  44. Hussain, I., Ayyz, K.M. and Khan, H. (2010) Sarhad J. Agric. 26, 169-176
  45. Burton, W.G. (1981) Am. Potato J., 58, 3-14
  46. Niczyporowicz, A.A.(1984) Acta Physiol.Plant., 6, 105-126
  47. Dehdashti, S.M. and Riahinia, S. (2008) J of Biol. Sci., 8, 908-913
  48. Sarkar, R.K., Pal, P.K. (2005) Ind. J. of Agri. Sci., 75, 143-146
  49. Saleem, M., Maqsood, M., Javaid, A., Hassan, M.U. and Khaliq, T. (2010) Pak. J. Bot., 42, 3659-3669
  50. Haruna, J.M. (2011) J. of An. & Plant Sci., 21, 653-659
  51. Baloch, M.S., Awan, I.U. Assan, G. (2006) J. Zhejiang Univ Sci. B, 7, 572-579

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper