Engineered Polymers in Packaging: Some Solutions to Prevent Electrostatic Discharge

Engineered Polymers in Packaging: Some Solutions to Prevent Electrostatic Discharge

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1928 57 184 116-123 Volume 8 - Feb 2019

Abstract

Due to their wide range of properties and features, the polymeric materials are largely used in flexible packaging. These materials are fitting an extraordinarily variety of applications. Here we start a series of articles, the aim of which is that of discussing how polymers relate themselves to applications. This first article is concerning the polymers engineered to control the electrostatic discharge.

Keywords

Packaging Films, Flexible Packaging, Electrostatic Discharge Materials, Polymers, Carbon Black, Carbon Nanotubes, Converting Industry

References

  1. Gooding, D. M., & Kaufman, G. K. (2011). Tribocharging and the Triboelectric Series, In Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd. DOI: 10.1002/9781119951438.eibc2239
  2. Henniker, J. (1962). Triboelectricity in polymers. Nature, 196(4853), 474. DOI: 10.1038/196474a0
  3. Freeman, G. R., & March, N. H. (1999). Triboelectricity and some associated phenomena. Materials science and technology, 15(12), 1454-1458. DOI: 10.1179/026708399101505464
  4. Agarwal, S. (2014). Understanding ESD and EOS failures in Semiconductor Devices, Electronic Design, Feb 6, 2014. URL: http://electronicdesign.com/power/understanding-esd-and-eos-failures-semiconductor-devices
  5. Németh, E., Albrecht, V., Schubert, G., & Simon, F. (2003). Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity. Journal of Electrostatics, 58(1-2), 3-16. DOI: 10.1016/s0304-3886(02)00137-7
  6. Drobny, W. A. (2007). Handbook of Thermoplastic Elastomers, William Andrew Editor. ISBN 9780323221368
  7. Sparavigna, A. C. (2008). Antistatic polymers for packaging. Converter: Flessibili, Carta, Cartone, 70, 38-45.
  8. Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A. R., & Sparavigna, A. (2008). Polypyrrole-coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles, 38(1), 55-68. DOI: 10.1177/1528083707087834
  9. Ohring, M. (1992). The Materials Science of Thin Films, Academic Press. ISBN 9780125249751
  10. Volume and Surface Resistivity Measurements of Insulating Materials Using the Model 6517A Electrometer/High Resistance Meter. Keithley. URL: http://four-point-probes.com/volume_surface.pdf
  11. Blythe, A. R. (1984). Electrical resistivity measurements of polymer materials. Polymer Testing, 4(2-4), 195-209. DOI: 10.1016/0142-9418(84)90012-6
  12. Aminabhavi, T. M., Cassidy, P. E., & Thompson, C. M. (1990). Electrical resistivity of carbon-black-loaded rubbers. Rubber chemistry and technology, 63(3), 451-471. DOI: 10.5254/1.3538265
  13. Cvetko, B. F., Brungs, M. P., Burford, R. P., & Skyllas-Kazacos, M. (1987). Conductivity measurements of electrodeposited polypyrrole. Journal of applied electrochemistry, 17(6), 1198-1202. DOI: 10.1007/bf01023603
  14. Maryniak, W. A., Uehara, T., & Noras, M. A. (2003). Surface resistivity and surface resistance measurements using a concentric ring probe technique. Trek Application Note, 1005, 1-4.
  15. Haider Khaleel (2014). Innovation in Wearable and Flexible Antennas, WIT Press. ISBN 9781845649869
  16. Chung, D.D.L. (2010). Functional Materials: Electrical, Dielectric, Electromagnetic, Optical and Magnetic Applications, World Scientific Publishing Company. ISBN 9789814287159
  17. Madou, M. J. (2002). Fundamentals of Microfabrication: The Science of Miniaturization, Second Edition. CRC Press, Mar 13, 2002. ISBN 9781482274004
  18. Chase, G. (2004). Ohms per square What! ESD Journal, The ESD & Electrostatics Magazine. URL: http://www.esdjournal.com/techpapr/ohms.htm
  19. Smits F. M. (1958). Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal, May 1958, 711-718. DOI: 10.1002/j.1538-7305.1958.tb03883.x
  20. Berry, R. W., Hall, P. M., & Harris, M. T. (1968). Thin Film Technology, Van Nostrand Reinhold Company, New York.
  21. Rosner, R. B. (2001). Conductive Materials for ESD Applications: An Overview, IEEE Transactions on Device and Materials Reliability, 1, 9-16. DOI: 10.1109/7298.946455
  22. Patel, N. C., & Balfour, K. G. (2003). U.S. Patent No. 6,528,572. Washington, DC: U.S. Patent and Trademark Office.
  23. Zarras, P., & Irvin, J. (2002). Electrically active polymers. Encyclopedia of Polymer Science and Technology. DOI: 10.1002/0471440264.pst107
  24. Tolinski, M. (2015). Additives for Polyolefins: Getting the Most out of Polypropylene, Polyethylene and TPO, William Andrew Editor. ISBN: 9780323358842
  25. Kaminsky, W. (2004). Polyolefins. In Handbook of Polymer Synthesis (pp. 11-82). CRC Press. ISBN 9781420030594
  26. Novel fluoropolymers with improved characteristics (2002). Patent WO 2002000741 A1. URL: https://www.google.com/patents/WO2002000741A1?cl=en
  27. Jonassen, N. (2000). How fast does a charge decay. Compliance Engineering, 17, 2.
  28. Jonassen, N. (2012). How fast does a charge decay. Posted online, July 1, 2012. URL: http://incompliancemag.com/article/how-fast-does-a-charge-decay/
  29. Markarian, J. (2008). New developments in antistatic and conductive additives. Plastics, Additives and Compounding, 10(5), 22–25. DOI: 10.1016/S1464-391X(08)70172-7
  30. Gornicka, B (2010). Antistatic properties of nanofilled coatings. Acta Physica Polonica A
  31. 117 (5): 869–872. DOI: 10.12693/aphyspola.117.869
  32. Yuan, Q., Bateman, S. A., & Wu, D. (2010). Mechanical and conductive properties of carbon black-filled high-density polyethylene, low-density polyethylene, and linear low-density
  33. polyethylene. Journal of Thermoplastic Composite Materials, 23(4), 459-471. DOI:
  34. 10.1177/0892705709349318
  35. Yuan, Q., Wu, D. (2010). Low percolation threshold and high conductivity in carbon black filled polyethylene and polypropylene composites. J. Appl. Polym. Sci., 115: 3527–3534. DOI: 10.1002/app.30919
  36. Chung, K. T., Sabo, A., & Pica, A. P. (1982). Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites. Journal of Applied Physics, 53(10), 6867-6879. DOI: 10.1063/1.330027
  37. Three Main Properties of Carbon Black. Mitsubishi Chemical. URL: http://www.carbonblack.jp/en/cb/tokusei.html
  38. International Carbon Black Association. URL: http://carbon-black.org/images/docs/2016-ICBA-Carbon-Black-User-Guide.pdf
  39. Conductive Carbon Black. Premix. URL: http://www.premixgroup.com/product-cats/conductive-compounds/conductive-carbon-black/
  40. Zhang, W., Dehghani-Sanij, A. A., & Blackburn, R. S. (2007). Carbon based conductive polymer composites. Journal of materials science, 42(10), 3408-3418. DOI: 10.1007/s10853-007-1688-5
  41. Sparavigna, A. (2006). Lattice specific heat of carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 93(3), 983-986. DOI: 10.1007/s10973-007-8549-y
  42. Sparavigna, A. C. (2014). Some Notes on Boltzmann and Landauer Phonon Thermal Transport at Nanoscale. International Journal of Sciences, 3(12), 24-27. DOI: 10.18483/ijsci.604
  43. Vv. Aa. (2016). Timeline of carbon nanotubes. Wikipedia URL: https://en.wikipedia.org/wiki/Timeline_of_carbon_nanotubes
  44. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58. DOI: 10.1038/354056a0
  45. Designing for ESD Protection Using FIBRIL™ Nanotubes in Polymer. Hyperion Catalysis. URL: http://www.hyperioncatalysis.com/PDFs/Designing%20for%20ESD.pdf
  46. Gladstone, J. H., & Dale, J. T. (1863). Researches on the refraction, dispersion and sensitiveness of liquids. Philosophical Transactions of Royal Society of London, 153:317–343.
  47. Tuncer, E., Serdyuk, Y. V., & Gubanski, S. M. (2001). Dielectric mixtures--electrical properties and modeling. arXiv preprint cond-mat/0111254.
  48. Zhang, X., Yan, X., He, Q., Wei, H., Long, J., Guo, J., Gu, H., Yu, J. Liu, J., Ding, D., Sun, L., Wei, S., & Guo, Z. (2015). Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS applied materials & interfaces, 7(11), 6125-6138. DOI: 10.1021/am5082183
  49. Carbon Nanotube Manufacturers and Suppliers. URL: http://www.nanowerk.com/carbon_nanotube_manufacturers_and_suppliers.php
  50. Minimizing the environmental impacts of carbon nanotubes. MIT 2008. URL: https://cee.mit.edu/onbalance/2008/october
  51. Schlagenhauf, L., Buerki-Thurnherr, T., Kuo, Y. Y., Wichser, A., Nüesch, F., Wick, P., & Wang, J. (2015). Carbon Nanotubes Released from an Epoxy-Based Nanocomposite: Quantification and Particle Toxicity. Environmental Science & Technology, 49(17), 10616-10623. DOI: 10.1021/acs.est.5b02750
  52. Bhadra S., Rahaman M., Noorunnisa Khanam P. (2019) Electrical and Electronic Application of Polymer–Carbon Composites. In: Rahaman M., Khastgir D., Aldalbahi A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. DOI: 10.1007/978-981-13-2688-2_12
  53. Chandrasekhar, P. (2018). Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene. Springer. ISBN 9783319693781
  54. Mesquita A.S., de Andrade e Silva L.G., de Miranda L.F. (2018) Mechanical, Thermal and Electrical Properties of Polymer (Ethylene Terephthalate—PET) Filled with Carbon Black. In: Li B. et al. (eds) Characterization of Minerals, Metals, and Materials 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. DOI: 10.1007/978-3-319-72484-3_64
  55. Silva, T. F. D., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Preparation and characterization of antistatic packaging for electronic components based on poly (lactic acid)/carbon black composites. Journal of Applied Polymer Science, 47273. DOI: 10.1002/app.47273
  56. Teoh, HC., Yaacob, K.A., Saad, A.A., & Mariatti, M. (2018). Enhancement of thermal and electrical conductivities of cyanoacrylate by addition of carbon based nanofillers. J Mater Sci: Mater Electron 29(12), 9861-9870. https://doi.org/10.1007/s10854-018-9027-y
  57. Endo, Y., Ohsawa, A., & Yamaguma, M. (2019). Electrostatic hazards of charging of bedclothes and ignition in medical facilities. International Journal of Occupational Safety and Ergonomics, 25(1), 35-39. DOI: 10.1080/10803548.2018.1424793

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper