Studying the Features of CRISPR Loci in Stenotrophomonas

Studying the Features of CRISPR Loci in Stenotrophomonas

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Hengxia Fu, Mengmeng Zhang, Jiangnan Qin, Wei Luo, Bin Wang

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1978 9 32 88-93 Volume 8 - Mar 2019

Abstract

To study the genetic structure of the Stenotrophomonas CRISPR-Cas system using bioinformatics methods. Methods The sequence information of all Stenotrophomonas strains published in the CRISPRdb database was collected, and the CRISPR locus was analyzed using the CRISPRFinder software; All spacers were searched by BLAST platform in the PubMed database to find homologous sequences, and then the relationship between the number of spacer sequences and the number of phages was statistically analyzed. Results According to statistics, 15 confirmed CRISPR structures and 132 questionable CRISPRs were found in 26 strains of Stenotrophomonas, and the repeat sequences of CRISPR structures in different strains were more conservative. Only 1.3% of spacers were homologous with the sequences of known bacteriophages or plasmid in NCBI database. Conclusion The targeted genes of the spacer sequences are mainly from the genome of the bacteria, indicating that the evolution of the Stenotrophomonas CRISPR is related to other bacterial genes. In addition, the negative correlation between the spacer sequence and the number of phages indicates that CRISPR can prevent phage invasion. Analysis of the structure of CRISPR loci in the genome of Stenotrophomonas laid the foundation for further study of drug resistance and genomic stability.

Keywords

Stenotrophomonas, CRISPR-Cas Systems, Repeat Sequence, Spacer Sequence

References

  1. Alavi, P., Starcher, M.R., Thallinger, G.G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15(1): 482-496. doi: 10.1186/1471-2164-15-482.
  2. Ribitsch, D., Heumann, S., Karl, W. (2012). Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli. J Biotechnol,157(1):140-7. DOI: 10.1016/j.jbiotec.2011.09.025
  3. Brooke, J.S. (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev,25(1):2-41. doi: 10.1128/CMR.00019-11.
  4. Karimi, Z., Ahmadi, A., Najafi, A., et al. (2018). Bacterial CRISPR Regions: General Features and their Potential for Epidemiological Molecular Typing Studies. Open. Microbiol. J. 12: 59-70. DOI: 10.2174/1874285801812010059
  5. Makarova, K.S., Aravind, L., Wolf, Y.I. (2011). Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct. 6:38. DOI: 10.1186/1745-6150-6-38
  6. Mali, P., Yang, L., Esvelt, K.M., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339: 823-826. DOI: 10.1126/science.1232033
  7. Wright, A.V., Nuñez, J.K., Doudna, J.A. (2016). Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell. 164(1-2):29-44. DOI: 10.1016/j.cell.2015.12.035.
  8. Rahmatabadi, S.S., Nezafat, N., Negahdaripour, M., et al. (2016). Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli, J. Basic. Microbiol. 56: 645-653. DOI: 10.1002/jobm.201500707.
  9. Zhao, X., Yu, Z., Xu, Z. (2018). Study the Features of 57 Confirmed CRISPR Loci in 38 Strains of Staphylococcus aureus. Front Microbiol. 9:1591. DOI: 10.3389/fmicb.2018.01591.
  10. Shariat, N., Timme, R.E., Pettengill, J.B. (2015). Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology. 161(2):374-386. doi: 10.1099/mic.0.000005.
  11. Grissa, I., Vergnaud, G., Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC. Bioinformatics. 8 :172. DOI: 10.1186/1471-2105-8-172
  12. Redman, M., King, A., Watson, C. (2016). What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 101(4):213-5. Redman, M., King, A., Watson, C. (2016). What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 101(4):213-5.
  13. Barrangou, R., Fremaux, C., Deveau, H. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1709-12. DOI: 10.1126/science.1138140
  14. Marraffini, L.A., Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 322 (5909): 1843-5. DOI: 10.1126/science.1165771
  15. Jiang, W., Maniv, I., Arain, F. (2013). Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet. 9(9): e1003844. DOI: 10.1371/journal.pgen.1003844
  16. Reed, F.A. (2017). CRISPR/Cas9 Gene Drive: Growing Pains for a New Technology. Genetics. 205(3):1037-1039. doi: 10.1534/genetics.116.198887.
  17. Hille, F., Richter, H., Wong, SP., Bratovič, M., Ressel, S., Charpentier, E. (2018). The Biology of CRISPR-Cas: Backward and Forward. Cell. 172 (6): 1239-1259. doi: 10.1016/j.cell.2017.11.032.
  18. Hauben, L., Vauterin, L., Moore, E., Hoste, B., Swings, J. (1999). Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol. 49 (4): 1749-60. DOI: 10.1099/00207713-49-4-1749
  19. van, Belkum, A., Soriaga, L.B., LaFave, M.C. (2015). Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa. MBio. 6: e01796-1815. DOI: 10.1128/mBio.01796-15
  20. Kunin, V., Sorek, R., Hugenholtz, P. (2007). Evolutionary conservation of Sequence and secondary structures in CRISPR repeats, Genome. Biol. 8: R61. DOI: 10.1186/gb-2007-8-4-r61
  21. Yang, S., Liu, J., Shao, F. (2015). Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus. Biochem. Biophys. Res. Commun. 464 :894-900. doi: 10.1016/j.bbrc.2015.07.062.
  22. Barrangou, R., Marraffini, L.A. (2014). CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell. 54 (2): 234–44. doi: 10.1016/j.molcel.2014.03.011.
  23. Nozawa, T., Furukawa, N., Aikawa, C. (2011). CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One. 6(5): e19543. doi: 10.1371/journal.pone.0019543.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue March 2019

Volume 8, March 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper