The Role of TMEM127 in mTOR Pathway and Cancer Suppression

The Role of TMEM127 in mTOR Pathway and Cancer Suppression

Loading document ...
Loading page ...


Author(s): Qi Wang, Kun Wang

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1985 36 226 4-9 Volume 8 - Apr 2019


Transmembrane Protein 127 (TMEM127), also known as FLJ20507, mutated in pheochromocytomas and renal cancers. The current study found that TMEM127 is widely distributed, versatile and closely related to the occurrence of disease. In this article, We summarize the function of TMEM127 in the signaling pathway and its impact on disease in detail. In the mTOR signaling pathway, TMEM127 regulates cell growth and proliferation, and acts as a tumor suppressor to inhibit tumorigenesis. Moreover, it can be used as a diagnostic indicator in pheochromocytoma and hereditary paraganglioma-pheochromocytoma syndrome. In addition, we have integrated the current clinical data and monitoring methods. This will provide ideas for further exploration of the function of TMEM127 and also provide a basis for the diagnosis and treatment of related diseases.


TMEM127, mTOR Pathway, Pheochromocytoma, Paraganglioma


  1. Qin, Y., et al., Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet, 2010. 42(3): p. 229-33.
  2. Yao, L., et al., Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. Jama, 2010. 304(23): p. 2611-9.
  3. Laplante, M. and D.M. Sabatini, mTOR signaling at a glance. J Cell Sci, 2009. 122(Pt 20): p. 3589-94.
  4. Kwiatkowski, D.J. and B.D. Manning, Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet, 2005. 14 Spec No. 2: p. R251-8.
  5. Fraenkel, M., et al., mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes, 2008. 57(4): p. 945-57.
  6. Kim, D.H., et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002. 110(2): p. 163-75.
  7. Weichhart, T., M. Hengstschlager, and M. Linke, Regulation of innate immune cell function by mTOR. Nat Rev Immunol, 2015. 15(10): p. 599-614.
  8. Rao, R.R., et al., The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity, 2010. 32(1): p. 67-78.
  9. Rao, R.R., Q. Li, and P.A. Shrikant, Fine-tuning CD8(+) T cell functional responses: mTOR acts as a rheostat for regulating CD8(+) T cell proliferation, survival and differentiation? Cell Cycle, 2010. 9(15): p. 2996-3001.
  10. Thomson, A.W., H.R. Turnquist, and G. Raimondi, Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol, 2009. 9(5): p. 324-37.
  11. Huijts, C.M., et al., Immunological effects of everolimus in patients with metastatic renal cell cancer. Int J Immunopathol Pharmacol, 2017. 30(4): p. 341-352.
  12. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-101.
  13. Ma, X.M. and J. Blenis, Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol, 2009. 10(5): p. 307-18.
  14. Araki, K., et al., mTOR regulates memory CD8 T-cell differentiation. Nature, 2009. 460(7251): p. 108-12.
  15. Bayascas, J.R. and D.R. Alessi, Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell, 2005. 18(2): p. 143-5.
  16. Yang, H.W., et al., mTORC2 facilitates endothelial cell senescence by suppressing Nrf2 expression via the Akt/GSK-3beta/C/EBPalpha signaling pathway. Acta Pharmacol Sin, 2018. 39(12): p. 1837-1846.
  17. Lam, A.K., Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours. Endocr Pathol, 2017. 28(3): p. 213-227.
  18. Manger, W.M., An overview of pheochromocytoma: history, current concepts, vagaries, and diagnostic challenges. Ann N Y Acad Sci, 2006. 1073: p. 1-20.
  19. Dahia, P.L., et al., A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet, 2005. 1(1): p. 72-80.
  20. Favier, J. and A.P. Gimenez-Roqueplo, [Genetics of paragangliomas and pheochromocytomas]. Med Sci (Paris), 2012. 28(6-7): p. 625-32.
  21. Crona, J., D. Taieb, and K. Pacak, New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr Rev, 2017. 38(6): p. 489-515.
  22. Burnichon, N., et al., Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet, 2011. 20(20): p. 3974-85.
  23. Abermil, N., et al., TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. J Clin Endocrinol Metab, 2012. 97(5): p. E805-9.
  24. Korpershoek, E., et al., SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab, 2011. 96(9): p. E1472-6.
  25. Castro-Vega, L.J., et al., Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet, 2014. 23(9): p. 2440-6.
  26. Bayley, J.P., et al., SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol, 2010. 11(4): p. 366-72.
  27. Kunst, H.P., et al., SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res, 2011. 17(2): p. 247-54.
  28. Neumann, H.P., et al., Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab, 2011. 96(8): p. E1279-82.
  29. Boedeker, C.C., et al., Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab, 2009. 94(6): p. 1938-44.
  30. DeAngelis, L.M., et al., Multiple paragangliomas in neurofibromatosis: a new neuroendocrine neoplasia. Neurology, 1987. 37(1): p. 129-33.
  31. Gaal, J., et al., Parasympathetic paragangliomas are part of the Von Hippel-Lindau syndrome. J Clin Endocrinol Metab, 2009. 94(11): p. 4367-71.
  32. Maier, W., N. Marangos, and R. Laszig, Paraganglioma as a systemic syndrome: pitfalls and strategies. J Laryngol Otol, 1999. 113(11): p. 978-82.
  33. Toledo, S.P., et al., Penetrance and clinical features of pheochromocytoma in a six-generation family carrying a germline TMEM127 mutation. J Clin Endocrinol Metab, 2015. 100(2): p. E308-18.
  34. Hernandez, K.G., et al., Familial pheochromocytoma and renal cell carcinoma syndrome: TMEM127 as a novel candidate gene for the association. Virchows Arch, 2015. 466(6): p. 727-32.
  35. Favier, J., L. Amar, and A.P. Gimenez-Roqueplo, Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol, 2015. 11(2): p. 101-11.
  36. Bausch, B., et al., Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol, 2017. 3(9): p. 1204-1212.
  37. Aresta, C., et al., Pheochromocytoma in Congenital Cyanotic Heart Disease. Case Rep Endocrinol, 2018. 2018: p. 2091257.
  38. Rasquin, L., et al., Simultaneous Pheochromocytoma, Paraganglioma, and Papillary Thyroid Carcinoma without Known Mutation. Case Rep Endocrinol, 2018. 2018: p. 6358485.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper