Composition Operations of Generalized Entropies Applied to the Study of Numbers

Composition Operations of Generalized Entropies Applied to the Study of Numbers

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2044 19 33 87-92 Volume 8 - Apr 2019

Abstract

The generalized entropies of C. Tsallis and G. Kaniadakis have composition operations, which can be applied to the study of numbers. Here we will discuss these composition rules and use them to study some famous sequences of numbers (Mersenne, Fermat, Cullen, Woodall and Thabit numbers). We will also consider the sequence of the repunits, which can be seen as a specific case of q-integers.

Keywords

Generalized Entropies, Q-Calculus, Abelian Groups, Hyperbolic Functions, Fermat Numbers, Mersenne Numbers, Thabit Numbers, Repunits

References

  1. Sparavigna, A. C. (2015). Shannon, Tsallis and Kaniadakis entropies in bi-level image thresholding. International Journal of Sciences 4(2), 35-43. DOI: 10.18483/ijSci.626
  2. Sparavigna, A. C. (2015). Relations between Tsallis and Kaniadakis entropic measures and rigorous discussion of conditional Kaniadakis entropy. International Journal of Sciences, 4(10), 47-50. DOI: 10.18483/ijsci.866
  3. Sparavigna, A. C. (2015), On The Generalized Additivity Of Kaniadakis Entropy, International Journal of Sciences 4(2), 44-48. DOI: 10.18483/ijSci.627
  4. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. DOI: 10.1007/bf01016429
  5. Kaniadakis, G. (2001). Non-linear kinetics underlying generalized statistics. Physica A, 296, 405–425. DOI: 10.1016/s0378-4371(01)00184-4
  6. Kaniadakis, G. (2013). Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy, 15, 3983-4010. DOI: 10.3390/e15103983
  7. Sparavigna, A. C. (2015). Gray-level image transitions driven by Tsallis entropic index. International Journal of Sciences 4(2), 16-25. DOI: 10.18483/ijSci.621
  8. Portes De Albuquerque, M., Esquef, I. A., Gesualdi Mello, A. R., & Portes De Albuquerque, M. (2004). Image thresholding using Tsallis entropy. Pattern Recognition Letters, 25(9), 1059-1065. DOI: 10.1016/j.patrec.2004.03.003
  9. Sparavigna, A. C. (2018). Generalized Sums Based on Transcendental Functions. SSRN Electronic Journal. Elsevier. DOI: 10.2139/ssrn.3171628
  10. Scarfone, A. M. (2013). Entropic forms and related algebras. Entropy, 15(2), 624-649. DOI: 10.3390/e15020624
  11. Sicuro, G., & Tempesta, P. (2016). Groups, information theory, and Einstein's likelihood principle. Phys. Rev. E 93, 040101(R). DOI: 10.1103/physreve.93.040101
  12. Tempesta, P. (2015). Groups, generalized entropies and L-series. Templeton Workshop on Foundations of Complexity, October 2015. http://www.cbpf.br/~complex/Files/talk_tempesta.pdf
  13. Abramowitz, M., & Stegun, I. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
  14. Kaniadakis, G. (2005). Statistical mechanics in the context of special relativity II. Phys. Rev. E, 72, 036108. DOI: 10.1103/physreve.72.036108
  15. Ernst, T. (2012). A Comprehensive Treatment of q-Calculus, Springer Science & Business Media.
  16. Annaby, M. H., & Mansour, Z. S. (2012). q-Fractional Calculus and Equations, Springer.
  17. Ernst, T. (2000). The History of q-calculus and a New Method. Department of Mathematics, Uppsala University.
  18. Aral, A., Gupta, V., & Agarwal, R. P. (2013). Applications of q-Calculus in Operator Theory. Springer Science & Business Media.
  19. Ernst, T. (2008). The different tongues of q-calculus. Proceedings of the Estonian Academy of Sciences, 2008, 57, 2, 81–99 DOI: 10.3176/proc.2008.2.03
  20. Kac, V., & Pokman Cheung (2002). Quantum Calculus, Springer, Berlin.
  21. Sparavigna, A. C. (2018). The q-integers and the Mersenne numbers. SSRN Electronic Journal. Elsevier. DOI: 10.2139/ssrn.3183800
  22. Sparavigna, A. C. (2018). On the generalized sum of the symmetric q-integers. Zenodo. DOI: 10.5281/zenodo.1248959
  23. Weisstein, Eric W. “Mersenne Number”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/MersenneNumber.html
  24. Weisstein, Eric W. “Fermat Number”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/FermatNumber.html
  25. Sparavigna, A. C. (2018). The group of the Fermat Numbers. Zenodo. DOI: 10.5281/zenodo.1252422
  26. Weisstein, Eric W. “Cullen Number”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/CullenNumber.html
  27. Weisstein, Eric W. “Woodall Number”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/WoodallNumber.html
  28. Sparavigna, A. C. (2019). On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers. Zenodo. DOI: 10.5281/zenodo.2634312
  29. Weisstein, Eric W. (2019). “Thâbit ibn Kurrah Number”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/ThabitibnKurrahNumber.html
  30. Sparavigna, A. C. (2019). A recursive formula for Thabit numbers. Zenodo. DOI: 10.5281/zenodo.2638790
  31. Weisstein, Eric W. (2019). “Repunit”. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/Repunit.html
  32. Beiler, A. H. (1966). "11111...111." Ch. 11 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover.
  33. Sparavigna, A. C. (2019). On Repunits. DOI: 10.5281/zenodo.2639620

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue April 2019

Volume 8, April 2019


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper