From Superficial Damage to Invasion of the Nucleosome: Ranking of Morbidities by the Biosemiotic Depth Hypothesis

From Superficial Damage to Invasion of the Nucleosome: Ranking of Morbidities by the Biosemiotic Depth Hypothesis

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): John W. Oller, Christopher A. Shaw

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2069 26 144 51-73 Volume 8 - Jun 2019

Abstract

At their most abstract level, according to a certain generalized paradigm in biosemiotic philosophy grounded in well-established mathematical proofs, valid communications from molecules upward must be formally isomorphic to the dynamic true narrative representations (TNRs) of natural language systems that vest those meaningful signs with their functional (pragmatic) content. TNRs, in DNA, RNA, proteins, and higher constructions, therefore, are requisite to health in the individual, in interactions with the larger environment, and with other organisms. In homo sapiens, the generalized biosemiotic paradigm proves that morbidities in general must always, in some manner, involve degradation of internal and external communications through TNRs in DNA, RNA, protein language, organelles, cells, tissues, and organ systems. The mathematically grounded paradigm shows that any given TNR can be superveniently degenerated, by very coarse or very fine degrees, to many distinct fictions, errors, lies, and nonsense strings out to the absolute limit of a complete erasure. The depth hypothesis asserts that if the timing and breadth of any degenerative disruption can be held equal, in fact or in principle, the depth of penetration of any disruptive factor into biosignaling representations must in theory be pathognomonic of severity in the supervened morbidities. From meiosis through conception to maturity, ceteris paribus, corruptions deeper in the developmental hierarchy must be more harmful in the morbidities they supervene. The depth hypothesis suggests a differentiation of autoimmune disorders as deeper than allergies, but less so than prion diseases, tumorigenesis, and metastatic cancers in that order. It suggests, therefore, a potentially useful generalized ranking of morbidities.

Keywords

Aluminum Adjuvants, Autoimmune Diseases, Biosemiotic Depth, Degrading Biosignaling Systems, Etiology of Morbidities, Pragmatic Mapping, TNR-Theory, True Narrative Representations

References

  1. B.-O. Kueppers, “The nucleation of semantic information in prebiotic matter,” in Quasispecies: From Theory to Experimental Systems, vol. 392, E. Domingo and P. Schuster, Eds. Cham: Springer Int Publishing Ag, 2016, pp. 23–42.
  2. P. Schuster, “Increase in complexity and information through molecular evolution,” Entropy, vol. 18, no. 11, p. UNSP 397, Nov. 2016. https://doi.org/10.3390/e18110397
  3. P. Schuster, “Molecular evolution between chemistry and biology,” Eur. Biophys. J. Biophys. Lett., vol. 47, no. 4, pp. 403–425, May 2018.
  4. Y. Zhong, “A theory of semantic information,” China Commun., vol. 14, no. 1, pp. 1–17, Jan. 2017.
  5. S. Kozyrev, “Biology as a constructive physics,” P-Adic Numbers Ultrametric Anal. Appl., vol. 10, no. 4, pp. 305–311, Oct. 2018. https://doi.org/10.1134/s2070046618040076
  6. S. Chatterjee and S. Yadav, “The origin of prebiotic information system in the peptide/RNA world: a simulation model of the evolution of translation and the genetic code,” Life, vol. 9, no. 1, p. 25, Mar. 2019. https://doi.org/10.3390/life9010025
  7. M. Barbieri, “Code Biology, Peircean Biosemiotics, and Rosen’s Relational Biology,” Biol. Theory, vol. 14, no. 1, pp. 21–29, Mar. 2019. https://doi.org/10.1007/s13752-018-0312-z
  8. J. Uexkull, “The theory of meaning,” Semiotica, vol. 42, no. 1, pp. 25-, 1982.
  9. D. Favareau, “The biosemiotic turn part 1: a brief history of the sign concept in pre-modernist science,” Biosemiotics, vol. 1, no. 1, pp. 5–23, Apr. 2008. https://doi.org/10.1007/s12304-008-9010-8
  10. G. Katz, “The hypothesis of a genetic protolanguage: an epistemological investigation,” Biosemiotics, vol. 1, no. 1, pp. 57–73, Apr. 2008. https://doi.org/10.1007/s12304-008-9005-5
  11. M. Barbieri, “Biosemiotics: a new understanding of life,” Naturwissenschaften, vol. 95, no. 7, pp. 577–599, Jul. 2008. https://doi.org/10.1007/s00114-008-0368-x
  12. M. Barbieri, “A short history of biosemiotics,” Biosemiotics, vol. 2, no. 2, pp. 221–245, Jul. 2009. https://doi.org/10.1007/s12304-009-9042-8
  13. M. Barbieri, “From biosemiotics to code biology,” Biol. Theory, vol. 9, no. 2, pp. 239–249, Jun. 2014.
  14. E. Fernandez, “Taking the relational turn: biosemiotics and some new trends in biology,” Biosemiotics, vol. 3, no. 2, pp. 147–156, Aug. 2010. https://doi.org/10.1007/s12304-010-9084-y
  15. P. Cobley, “Codes and coding: Sebeok’s zoosemiotics and the dismantling of the fixed-code fallacy,” Semiotica, vol. 198, pp. 33–45, Feb. 2014. https://doi.org/10.1515/sem-2013-0100
  16. K. Kull, “Four ages of understanding: the first postmodern survey of philosophy from ancient times to the turn of the twenty-first century,” Chin. Semiot. Stud., vol. 12, no. 3, pp. 341–349, Aug. 2016. https://doi.org/10.3138/9781442675032-007
  17. D. Martinelli, “Thomas Albert Sebeok and semiotics,” Chin. Semiot. Stud., vol. 12, no. 3, pp. 387–393, Aug. 2016.
  18. D. Bardos and G. A. Zemplen, “The shape of biology to come? The account of form and form of account in hoffmeyer’s biosemiotics,” Tradit. Discov., vol. 43, no. 1, pp. 32–50, Feb. 2017. https://doi.org/10.5840/traddisc20174316
  19. T. Maran, A. Sharov, and M. Tønnessen, “The first decade of Biosemiotics,” Biosemiotics, vol. 10, no. 3, pp. 315–318, Dec. 2017. https://doi.org/10.1007/s12304-017-9310-y
  20. C. Woese, The Genetic Code the Molecular basis for Genetic Expression. New York: Harper and Row, 1967.
  21. M. Yčas, The Biological Code, First Edition edition. Amsterdam: North Holland Publishing Company, 1969.
  22. F. H. C. Crick, “Central dogma of molecular biology,” Nature, vol. 227, no. 5258, pp. 561–563, Aug. 1970. https://doi.org/10.1038/227561a0
  23. F. H. C. Crick, “The genetic code,” in What Mad Pursuit: A Personal View of Scientific Discovery, New York, NY: Basic Books, 1988, pp. 89–101.
  24. E. N. Trifonov, “The multiple codes of nucleotide-sequences - viewpoint,” Bull. Math. Biol., vol. 51, no. 4, pp. 417–432, 1989.
  25. M. Barbieri, Ed., Introduction to biosemiotics: the new biological synthesis. Springer Netherlands, 2007.
  26. K. Konopka, “Sequences and codes: Fundamentals of biomolecular cryptology,” in Biocomputing Informatics and Genome Projects, D. W. Smith, Ed. San Diego, CA: Academic Press, 1994, pp. 119–174. https://doi.org/10.1016/b978-0-08-092596-7.50008-3
  27. L. E. Kay, “Who wrote the book of life? Information and the transformation of molecular biology, 1945-55,” Sci. Context, vol. 8, no. 4, pp. 609–634, 1995.
  28. O. Popov, D. M. Segal, and E. N. Trifonov, “Linguistic complexity of protein sequences as compared to texts of human languages,” Biosystems, vol. 38, no. 1, pp. 65–74, 1996. https://doi.org/10.1016/0303-2647(95)01568-x
  29. W. Nöth, “Biolinguistics and biosemiotics,” in Biosemiotic Perspectives on Language and Linguistics, vol. 13, E. Velmezova, K. Kull, and S. J. Cowley, Eds. Cham Heidelberg New York Dordrecht London: Springer, 2015, pp. 151–168. https://doi.org/10.1007/978-3-319-20663-9_8
  30. S. T. Zolyan and R. Zhdanov, “Genome as (hyper)text: From metaphor to theory,” Semiotica, no. 225, pp. 1–18, Nov. 2018. https://doi.org/10.1515/sem-2016-0214
  31. M. García-Sancho, “The rise and fall of the idea of genetic information (1948-2006),” Genomics Soc. Policy, vol. 2, no. 3, Dec. 2006. https://doi.org/10.1186/1746-5354-2-3-16
  32. U. E. Stegmann, “‘Genetic coding’ reconsidered: an analysis of actual usage,” Br. J. Philos. Sci., vol. 67, no. 3, pp. 707–730, Sep. 2016. https://doi.org/10.1093/bjps/axv007
  33. C. R. Woese, The Genetic Code: the Molecular basis for Genetic Expression. New York, NY: Harper & Row, 1967.
  34. M. Barbieri, “What is code biology?,” Biosystems, vol. 164, pp. 1–10, Feb. 2018.
  35. M. M. Rakocevic, “The cipher of the genetic code,” Biosystems, vol. 171, pp. 31–47, Sep. 2018. https://doi.org/10.1016/j.biosystems.2018.05.009
  36. G. Gamow, “Letter from George Gamow to Linus Pauling. October 22, 1953. - Correspondence - Linus Pauling and the Race for DNA: A Documentary History,” 22-Oct-1953.
  37. G. Gamow, Possible mathematical Relation between Deoxyribonucleic Acid and proteins. København: Munksgaard, 1954.
  38. M. J. Simons and A. J. Pellionisz, “Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development,” Cerebellum Lond. Engl., vol. 5, no. 1, pp. 27–35, 2006. https://doi.org/10.1080/14734220500378581
  39. S. V. Petoukhov, “The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts,” ArXiv11023596 Q-Bio, Feb. 2011.
  40. J. Pellionisz, “The decade of fractogene: from discovery to utility - proofs of concept open genome-based clinical applications,” Int. J. Syst. Cybern. Inform., pp. 17–28, 2012.
  41. J. Pellionisz, R. Graham, P. A. Pellionisz, and J.-C. Perez, “Recursive genome function of the cerebellum: geometric unification of neuroscience and genomics,” in Handbook of the Cerebellum and Cerebellar Disorders, M. Manto, Ed. Berlin: Springer, 2013, pp. 1381–1423. https://doi.org/10.1007/978-94-007-1333-8_61
  42. Cattani and G. Pierro, “On the Fractal Geometry of DNA by the Binary Image Analysis,” Bull. Math. Biol., vol. 75, no. 9, pp. 1544–1570, Sep. 2013. https://doi.org/10.1007/s11538-013-9859-9
  43. Di Ieva, F. Grizzi, H. Jelinek, A. J. Pellionisz, and G. A. Losa, “Fractals in the neurosciences, part I: General principles and basic neurosciences,” Neuroscientist, vol. 20, no. 4, pp. 403–417, Aug. 2014. https://doi.org/10.1177/1073858413513927
  44. Di Ieva, P.-J. Le Reste, B. Carsin-Nicol, J.-C. Ferre, and M. D. Cusimano, “Diagnostic Value of Fractal Analysis for the Differentiation of Brain Tumors Using 3-Tesla Magnetic Resonance Susceptibility-Weighted Imaging,” Neurosurgery, vol. 79, no. 6, pp. 839–846, Dec. 2016. https://doi.org/10.1227/neu.0000000000001308
  45. S. Liu et al., “Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging,” Sci. Rep., vol. 7, no. 1, p. 8302, 16 2017. https://doi.org/10.1038/s41598-017-08862-6
  46. T. A. Sebeok, “Biosemiotics: its roots, proliferation and prospects,” in Essential Readings in Biosemiotics: Anthology and Commentary, D. Favareau, Ed. Dordrecht: Springer Netherlands, 2001, pp. 217–236. https://doi.org/10.1007/978-1-4020-9650-1_6
  47. N. A. Chomsky, “Language and Mind,” 1968. [Online]. Available: https://www.marxists.org/reference/subject/philosophy/works/us/chomsky.htm. [Accessed: 18-Sep-2015].
  48. N. A. Chomsky, Reflections on Language. New York: Pantheon, 1975.
  49. N. A. Chomsky, Language and Mind, 3 edition. Cambridge ; New York: Cambridge University Press, 2006.
  50. N. A. Chomsky, “The machine, the ghost, and the limits of understanding: Newton’s contributions to the study of mind,” presented at the The CSMN Annual Lecture on Mind in Nature, Center for the Study of Mind in Nature, University of Oslo, 2011.
  51. N. A. Chomsky, “Science, mind, and limits of understanding.” Jan-2014.
  52. R. W. Sperry, “Changing concepts of consciousness and free will,” Perspect. Biol. Med., vol. 20, no. 1, pp. 9–19, 1976. https://doi.org/10.1007/bf01115112
  53. R. W. Sperry, “Some effects of disconnecting the cerebral hemispheres,” Nobelprize.org, 08-Dec-1981. [Online]. Available: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1981/sperry-lecture_en.html. [Accessed: 09-Jul-2015].
  54. M. Piattelli-Palmarini, J. Uriagereka, and P. Salaburu, Eds., Of minds and language: A dialogue with Noam Chomsky in the Basque Country, 1 edition. Oxford: Oxford University Press, 2011. https://doi.org/10.1017/s0022226713000108
  55. R. W. Sperry, “Consciousness, freewill and personal identity,” in Brain, Behaviour and Evolution, D. A. Oakley and H. C. Plotkin, Eds. Methuen and Company, 1979, pp. 219–228. https://doi.org/10.4324/9781315149523-10
  56. N. Chomsky, Cartesian Linguistics: A Chapter in the History of Rationalist Thought, 1st ed. New York, NY: Harper & Row, 1966.
  57. N. A. Chomsky, “Of minds and language,” Biolinguistics, vol. 1, pp. 9–27, 2007.
  58. E. D. Weinberger, “A theory of pragmatic information and its application to the quasi-species model of biological evolution,” Biosystems, vol. 66, no. 3, pp. 105–119, Sep. 2002. https://doi.org/10.1016/s0303-2647(02)00038-2
  59. M. Barbieri, “What is Information?,” Biosemiotics, vol. 5, no. 2, Aug. 2012.
  60. J. W. Oller, “Pragmatic information,” in Biological Information: New Perspectives, 1 edition., Robert J. Marks_II, J. C. Sanford, W. A. Dembski, and B. L. Gordon, Eds. New Jersey: World Scientific Publishing Company, 2013, pp. 64–86.
  61. R. Maleeh, “Pragmatic information as a unifying biological concept,” Information, vol. 5, no. 3, pp. 451–478, Sep. 2014. https://doi.org/10.3390/info5030451
  62. S. Peirce, “The logic of relatives,” The Monist, vol. 7, no. 2, pp. 161–217, Jan. 1897.
  63. Tarski, “The concept of truth in formalized languages,” J. Symb. Log., vol. 6, pp. 73–89, 1941.
  64. Tarski, “The semantic conception of truth,” in Readings in Philosophical Analysis, H. Feigl and W. Sellars, Eds. New York, NY: Appleton, 1949, pp. 341–374.
  65. J. W. Oller, “The antithesis of entropy: biosemiotic communication from genetics to human language with special emphasis on the immune systems,” Entropy, vol. 12, no. 4, pp. 631–705, Mar. 2010. https://doi.org/10.3390/e12040631
  66. J. W. Oller, “Biosemiotic entropy: Concluding the series,” Entropy, vol. 16, no. 7, pp. 4060–4087, Jul. 2014. https://doi.org/10.3390/e16074060
  67. J. W. Oller, “How grammatical relations are determined,” in Proceedings of the 22nd Forum of the Linguistic Association of Canada and the United States, San Antonio, Texas, August 8-12, 1995, B. Hoffer, Ed. Chapel Hill, NC: Linguistic Association of Canada and the United States, 1996, pp. 37–88.
  68. J. F. Sowa, “Commentary on ‘Existential Graphs: MS 514 by Charles Sanders Peirce,’” 19-Oct-2017. [Online]. Available: http://www.jfsowa.com/peirce/ms514.htm. [Accessed: 07-Jan-2019].
  69. J. F. Sowa, “Peirce’s tutorial on existential graphs,” Semiotica, vol. 186, no. 1–4, pp. 345–394, Aug. 2011. https://doi.org/10.1515/semi.2011.060
  70. J. F. Sowa, “Existential Graphs: The simplest notation for logic ever invented,” 2017.
  71. J. W. Oller, L. Chen, S. D. Oller, and N. Pan, “Empirical predictions from a general theory of signs,” Discourse Process., vol. 40, no. 2, pp. 115–144, 2005. https://doi.org/10.1207/s15326950dp4002_2
  72. J. W. Oller and L. Chen, “Episodic organization in discourse and valid measurement in the sciences,” J. Quant. Linguist., vol. 14, no. 2–3, pp. 127–144, 2007.
  73. J. D. Watson and F. H. C. Crick, “A structure for deoxyribose nucleic acid,” Nature, vol. 171, pp. 731–738, Apr. 1953.
  74. R. R. Dietert and J. Dietert, “The completed self: an immunological view of the human-microbiome superorganism and risk of chronic diseases,” Entropy, vol. 14, no. 12, pp. 2036–2065, Oct. 2012. https://doi.org/10.3390/e14112036
  75. R. R. Dietert and E. K. Silbergeld, “Biomarkers for the 21st century: Listening to the microbiome,” Toxicol. Sci., vol. 144, no. 2, pp. 208–216, Apr. 2015.
  76. https://doi.org/10.1093/toxsci/kfv013
  77. J. Pellionisz, “The principle of recursive genome function,” The Cerebellum, vol. 7, no. 3, pp. 348–359, Sep. 2008.
  78. R. P. Feynman, “The Feynman Lectures on Physics,” 1964-1963. [Online]. Available: http://www.feynmanlectures.caltech.edu/I_01.html. [Accessed: 17-Sep-2018].
  79. R. M. Davidson and S. Seneff, “The initial common pathway of inflammation, disease, and sudden death,” Entropy, vol. 14, no. 12, pp. 1399–1442, Aug. 2012. https://doi.org/10.3390/e14081399
  80. Gryder, C. Nelson, and S. Shepard, “Biosemiotic entropy of the genome: mutations and epigenetic imbalances resulting in cancer,” Entropy, vol. 15, no. 1, pp. 234–261, Jan. 2013. https://doi.org/10.3390/e15010234
  81. M.-W. Ho, “The new genetics and natural versus artificial genetic modification,” Entropy, vol. 15, no. 11, pp. 4748–4781, Nov. 2013. https://doi.org/10.3390/e15114748
  82. A. Shaw, S. Seneff, S. D. Kette, L. Tomljenovic, J. W. Oller, and R. M. Davidson, “Aluminum-induced entropy in biological systems: implications for neurological disease,” J. Toxicol., vol. 2014, p. 491316, 2014. https://doi.org/10.1155/2014/491316
  83. M. Kosoy, “Deepening the conception of functional information in the description of zoonotic infectious diseases,” Entropy, vol. 15, no. 5, pp. 1929–1962, May 2013. https://doi.org/10.3390/e15051929
  84. Kennedy, S. Seneff, R. M. Davidson, J. W. Oller, B. E. Haley, and R. D. Masters, “Environmental toxicants and infant mortality in America,” Peertechz J. Biol. Res. Dev., vol. 1, no. 1, pp. 36–61, 2016. https://www.peertechz.com/articles/OJBS-1-105.php
  85. T. Jaynes, “Information theory and statistical mechanics. I,” Phys. Rev., vol. 106, no. 4, pp. 620–630, May 1957. https://doi.org/10.1103/physrev.106.620
  86. T. Jaynes, “Information Theory and Statistical Mechanics. II,” Phys. Rev., vol. 108, no. 2, pp. 171–190, Oct. 1957. https://doi.org/10.1103/physrev.108.171
  87. E. T. Jaynes, “New engineering applications of information theory,” in Proceedings of the First Symposium on Engineering, John Wiley & Sons, Inc., 1963, pp. 163–167.
  88. S. Viereck, “What life means to einstein: an interview,” The Saturday Evening Post, p. 17, 26-Oct-1929.
  89. “Occam’s razor,” Wikipedia. 08-May-2019.
  90. W. Leibniz, “Discourse on Metaphysics,” 1686. [Online]. Available: http://www.anselm.edu/homepage/dbanach/leibniz-discourse.htm#I. [Accessed: 29-Dec-2014].
  91. F. Chernoff, “Leibniz’s principle of the identity of indiscernibles,” Philos. Q., vol. 31, no. 123, pp. 126–138, Apr. 1981. https://doi.org/10.2307/2218719
  92. Einstein, “Time, space, and gravitation,” Science, vol. 51, no. 1305, pp. 8–10, 1920 1919.
  93. W. Oller, “Reasons why some methods work,” in Methods that work: ideas for literacy and language teachers, Second., J. W. Oller, Ed. Boston, MA: Heinle and Heinle Publishers, 1993, pp. 374–385. https://doi.org/10.1017/s0272263100014339
  94. N. Whitehead and B. Russell, Principia Mathematica - Volume One. San Bernardio, CA: Rough Draft Printing, 1910.
  95. N. Whitehead and B. Russell, Principia Mathematica - Volume Three. San Bernardio, CA: Rough Draft Printing, 1913.
  96. N. Whitehead and B. Russell, Principia Mathematica - Volume Two. San Bernardio, CA: Rough Draft Printing, 1912.
  97. S. Peirce, “Lowell Lectures. 1903, Lecture 5 ms., Robin Catalogue #469. Published: [Peirce 1976, HI/1, 333-354] as Lowell Lectures. 1903, Lecture V (469-470).,” in The new elements of mathematics, vol. III, 4 vols., C. Eisele, Ed. The Hague/Paris: Mouton, 1903, pp. 333–354. https://doi.org/10.1515/9783111563398.329
  98. Aristotle, “Στην ψυχή [On the Soul],” The Internet Classics Archive, vol. Book 3, Part 8. Daniel C. Stevenson, Web Atomics, MIT, ca-350AD.
  99. Russell, Principles of Mathematics. W W Norton & Co Inc, 1903.
  100. D. Irvine and H. Deutsch, “Russell’s Paradox,” in The Stanford Encyclopedia of Philosophy, Winter 2016., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2016.
  101. S. Peirce, “Logic, Considered as Semeiotic: An Overview of Charles Peirce’s Philosophical Logic, Constructed from Manuscript L75, Version 1,” Peirce’s Arisbe, 1998-1902. [Online]. Available: http://www.iupui.edu/~arisbe/menu/library/bycsp/L75/ver1/l75v1-09.htm. [Accessed: 18-Dec-2018]. https://doi.org/10.2979/trancharpeirsoc.50.4.523
  102. S. Peirce, “Lecture VIII: Forms of Induction and Hypothesis. Ms 105.,” in Writings of Charles S. Peirce: A Chronological Edition, August 1, 1982., vol. 1, 8 vols., M. Fisch, C. J. W. Kloesel, C. E. Moore, D. D. Roberts, L. A. Ziegler, and N. P. Atkinson, Eds. Bloomington, IN: Indiana University Press, 1865, pp. 256–271.
  103. S. Peirce, “On a new list of categories,” Proc. Am. Acad. Arts Sci., vol. 7, pp. 287–298, 1868.
  104. S. Peirce, “Questions concerning certain faculties claimed for man,” J. Specul. Philos., vol. 2, pp. 103–114, 1868.
  105. S. Campbell, Watch Me Grow! London: Carroll & Brown Publishers Limited, 2004.
  106. Langus, J. Mehler, and M. Nespor, “Rhythm in language acquisition,” Neurosci. Biobehav. Rev., vol. 81, pp. 158–166, Oct. 2017. https://doi.org/10.1016/j.neubiorev.2016.12.012
  107. T. Nazzi, J. Bertoncini, and J. Mehler, “Language discrimination by newborns: Toward an understanding of the role of rhythm.,” J. Exp. Psychol. Hum. Percept. Perform., vol. 24, no. 3, pp. 756–766, 1998. https://doi.org/10.1037//0096-1523.24.3.756
  108. Provasi, D. I. Anderson, and M. Barbu-Roth, “Rhythm perception, production, and synchronization during the perinatal period,” Front. Psychol., vol. 5, Sep. 2014. https://doi.org/10.3389/fpsyg.2014.01048
  109. Z. Sai, “The role of the mother’s voice in developing mother’s face preference: Evidence for intermodal perception at birth,” Infant Child Dev., vol. 14, no. 1, pp. 29–50, Mar. 2005. https://doi.org/10.1002/icd.376
  110. W. Oller, “Milestones in language development,” in Encyclopedia of Language Development, P. J. Brooks and V. Kempe, Eds. Thousand Oaks, CA: Sage Publications, Inc., 2014, pp. 377–382. https://sk.sagepub.com/reference/encyclopedia-of-language-development/n123.xml
  111. K. Oller, L. A. Wieman, W. J. Doyle, and C. Ross, “Infant babbling and speech,” J. Child Lang., vol. 3, no. 01, Feb. 1976. https://doi.org/10.1017/s0305000900001276
  112. Bergelson and D. Swingley, “At 6-9 months, human infants know the meanings of many common nouns,” Proc. Natl. Acad. Sci., vol. 109, no. 9, pp. 3253–3258, Feb. 2012. https://doi.org/10.1073/pnas.1113380109
  113. Bergelson and D. Swingley, “The acquisition of abstract words by young infants,” Cognition, vol. 127, no. 3, pp. 391–397, Jun. 2013. https://doi.org/10.1016/j.cognition.2013.02.011
  114. Bergelson and D. Swingley, “Young toddlers’ word comprehension is flexible and efficient,” PLoS ONE, vol. 8, no. 8, p. e73359, Aug. 2013. https://doi.org/10.1371/journal.pone.0073359
  115. Bergelson and R. N. Aslin, “Nature and origins of the lexicon in 6-mo-olds,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 49, pp. 12916–12921, Dec. 2017. https://doi.org/10.1073/pnas.1712966114
  116. J. W. Oller, S. D. Oller, and Liang Chen, “Milestones in impaired and unimpaired first language acquisition: why the sequence cannot easily be violated,” presented at the Tenth International Congress for the Study of Child Language, Frie University of Berlin, Henry Ford Building, Berlin, Germany, 28-Jul-2005. DOI: 10.13140/RG.2.1.4628.7848
  117. S. D. Oller, “Meaning matters: A clinician’s/student’s guide to general sign theory and its applicability in clinical settings,” J. Commun. Disord., vol. 38, no. 5, pp. 359–373, Sep. 2005. https://doi.org/10.1016/j.jcomdis.2005.03.002
  118. J. L. Ruark and C. A. Moore, “Coordination of lip muscle activity by 2-year-old children during speech and nonspeech tasks,” J. Speech Lang. Hear. Res. JSLHR, vol. 40, no. 6, pp. 1373–1385, Dec. 1997. https://doi.org/10.1044/jslhr.4006.1373
  119. J. W. Oller, S. D. Oller, and L. C. Badon, Milestones: Normal Speech and Language Development Across the Lifespan, Paper and DVD edition. San Diego: Plural Publishing, 2006.
  120. Carpenter, J. Call, and M. Tomasello, “A new false belief test for 36-month-olds,” Br. J. Dev. Psychol., vol. 20, no. 3, pp. 393–420, Sep. 2002. https://doi.org/10.1348/026151002320620316
  121. Berthoud-Papandropoulou and H. Kilcher, “Is a false belief statement a lie or a truthful statement? Judgments and explanations of children aged 3 to 8,” Dev. Sci., vol. 6, no. 2, pp. 173–177, Apr. 2003. https://doi.org/10.1111/1467-7687.00268
  122. Piaget, “Excerpt from The psychology of intelligence.,” in Language and Experience: Classic Pragmatism, J. W. Oller, Ed. Lanham, MD: University Press of America, 1947, pp. 203–216.
  123. Persaud and J. P. O’Leary, “Fibonacci Series, Golden Proportions, and the Human Biology,” Austin J. Surg., vol. 2, no. 5, p. 7, 2015.
  124. P. Shonkoff and A. S. Garner, “The lifelong effects of early childhood adversity and toxic stress,” Pediatrics, vol. 129, no. 1, pp. E232–E246, Jan. 2012. https://doi.org/10.1542/peds.2011-2663
  125. P. Gil and R. Rupprecht, “Attachment research. Current aspects of attachment theory and development psychology as well as neurobiological aspects in psychiatric and psychosomatic disorders,” Nervenarzt, vol. 74, no. 11, pp. 965–971, Nov. 2003.
  126. Steiman and N. Watemberg, “Apparent life-threatening events: patients’ health status at 5 years of age,” Isr. Med. Assoc. J. IMAJ, vol. 17, no. 11, pp. 673–677, Nov. 2015.
  127. A. Shaw and M. S. Petrik, “Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration,” J. Inorg. Biochem., vol. 103, no. 11, pp. 1555–1562, Nov. 2009. https://doi.org/10.1016/j.jinorgbio.2009.05.019
  128. U. S. Uchendu, B. I. Omalu, D. X. Cifu, and L. E. Egede, “Repeated concussions: time to spur action among vulnerable veterans,” Am. J. Public Health, vol. 106, no. 8, pp. 1366–1368, Aug. 2016. https://doi.org/10.2105/ajph.2016.303293
  129. J. St. John, “The control of mtDNA replication during differentiation and development,” Biochim. Biophys. Acta BBA - Gen. Subj., vol. 1840, no. 4, pp. 1345–1354, Apr. 2014. https://doi.org/10.1016/j.bbagen.2013.10.036
  130. P. M. Wiggins, “Life depends upon two kinds of water,” Plos One, vol. 3, no. 1, p. e1406, Jan. 2008. https://doi.org/10.1371/journal.pone.0001406
  131. F. Chaplin, “A proposal for the structuring of water,” Biophys. Chem., vol. 83, no. 3, pp. 211–221, Jan. 2000.
  132. Laage, T. Elsaesser, and J. T. Hynes, “Water dynamics in the hydration shells of biomolecules,” Chem. Rev., vol. 117, no. 16, pp. 10694–10725, Aug. 2017. https://doi.org/10.1021/acs.chemrev.6b00765
  133. Franzese and V. Bianco, “Water at biological and inorganic interfaces,” Food Biophys., vol. 8, no. 3, pp. 153–169, Sep. 2013.
  134. F. Chaplin, “Water’s hydrogen bond strength,” in Water and Life: The Unique Properties of H2O, R. M. Lynden-Bel, S. C. Morris, J. D. Barrow, J. L. Finney, and C. L. Harper, Eds. Boca Raton, FL, USA: CRC Press, 2010, pp. 69–86. https://doi.org/10.1201/ebk1439803561
  135. Okajima, M. Ando, and H. Hamaguchi, “Formation of ‘nano-ice’ and density maximum anomaly of water,” Bull. Chem. Soc. Jpn., vol. 91, no. 6, pp. 991–997, Jun. 2018. https://doi.org/10.1246/bcsj.20180052
  136. P. M. Wiggins, “Water in complex environments such as living systems,” Phys. -Stat. Mech. Its Appl., vol. 314, no. 1–4, pp. 485–491, Nov. 2002.
  137. M. Stadler, F. Demmel, J. Ollivier, and T. Seydel, “Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding,” Phys. Chem. Chem. Phys., vol. 18, no. 31, pp. 21527–21538, Aug. 2016. https://doi.org/10.1039/c6cp04146a
  138. S. Fujiwara et al., “Ligation-dependent picosecond dynamics in human hemoglobin as revealed by quasielastic neutron scattering,” J. Phys. Chem. B, vol. 121, no. 34, pp. 8069–8077, Aug. 2017. https://doi.org/10.1021/acs.jpcb.7b05182
  139. S. Boutet et al., “High-resolution protein structure determination by serial femtosecond crystallography,” Science, vol. 337, no. 6092, pp. 362–364, Jul. 2012.
  140. J. Tielrooij, S. T. van der Post, J. Hunger, M. Bonn, and H. J. Bakker, “Anisotropic water reorientation around ions,” J. Phys. Chem. B, vol. 115, no. 43, pp. 12638–12647, Nov. 2011. https://doi.org/10.1021/jp206320f
  141. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science, vol. 328, no. 5981, pp. 1006–1009, May 2010. https://doi.org/10.1126/science.1183512
  142. A. Shaw, Neural Dynamics of Neurological Disease. John Wiley & Sons, Inc., 2017.
  143. R. M. Davidson, A. Lauritzen, and S. Seneff, “Biological water dynamics and entropy: A biophysical origin of cancer and other diseases,” Entropy, vol. 15, no. 9, pp. 3822–3876, 2013. https://doi.org/10.3390/e15093822
  144. J. W. Oller, S. D. Oller, and S. N. Oller, Milestones: Normal Speech and Language Development Across the Life Span, 2nd ed. San Diego, CA: Plural Publishing, Inc., 2014.
  145. Watad et al., “The autoimmune/inflammatory syndrome induced by adjuvants (ASIA)/Shoenfeld’s syndrome: descriptive analysis of 300 patients from the international ASIA syndrome registry,” Clin. Rheumatol., vol. 37, no. 2, pp. 483–493, Feb. 2018. https://doi.org/10.1007/s10067-017-3748-9
  146. Samsel and S. Seneff, “Glyphosate pathways to modern diseases VI: Prions, amyloidoses and autoimmune neurological diseases,” J. Biol. Phys. Chem., vol. 17, no. 1, pp. 8–32, Mar. 2017. https://doi.org/10.4024/25sa16a.jbpc.17.01
  147. Huhn, “More and enhanced glyphosate analysis is needed,” Anal. Bioanal. Chem., vol. 410, no. 13, pp. 3041–3045, May 2018. https://doi.org/10.1007/s00216-018-1000-3
  148. H. C. Van Bruggen et al., “Environmental and health effects of the herbicide glyphosate,” Sci. Total Environ., vol. 616, pp. 255–268, Mar. 2018.
  149. Cattani et al., “Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress,” Toxicology, vol. 387, pp. 67–80, Jul. 2017. https://doi.org/10.1016/j.tox.2017.06.001
  150. E. Gallegos, M. Bartos, C. Bras, F. Gumilar, M. C. Antonelli, and A. Minetti, “Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring,” Neurotoxicology, vol. 53, pp. 20–28, Mar. 2016. https://doi.org/10.1016/j.neuro.2015.11.015
  151. M. Milesi et al., “Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats,” Arch. Toxicol., vol. 92, no. 8, pp. 2629–2643, Aug. 2018. https://doi.org/10.1007/s00204-019-02386-w
  152. Garcia-Espineira, L. Tejeda-Benitez, and J. Olivero-Verbel, “Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans,” Ecotoxicol. Environ. Saf., vol. 156, pp. 216–222, Jul. 2018. https://doi.org/10.1016/j.ecoenv.2018.02.075
  153. Antoniou et al., “Teratogenic effects of glyphosate-based herbicides: divergence of regulatory decisions from scientific evidence,” J. Environ. Anal. Toxicol., vol. 2012, Jun. 2012. https://doi.org/10.4172/2161-0525.s4-006
  154. Q. Mao et al., “The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome,” Environ. Health, vol. 17, p. 50, May 2018. https://doi.org/10.1186/s12940-018-0394-x
  155. Kim, J. Perez, S. Ferguson, and I. Campbell, “The specific incorporation of labeled aromatic-amino-acids into proteins through growth of bacteria in the presence of glyphosate - application,” Febs Lett., vol. 272, no. 1–2, pp. 34–36, Oct. 1990. https://doi.org/10.1016/0014-5793(90)80442-l
  156. R. A. Waterland, M. Travisano, K. G. Tahiliani, M. T. Rached, and S. Mirza, “Methyl donor supplementation prevents transgenerational amplification of obesity,” Int. J. Obes., vol. 32, no. 9, pp. 1373–1379, Sep. 2008. https://doi.org/10.1038/ijo.2008.100
  157. R. A. Waterland, “Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers,” Annu. Rev. Nutr., vol. 34, no. 1, pp. 337–355, Jul. 2014. https://doi.org/10.1146/annurev-nutr-071813-105315
  158. J. Perper, L. Kuller, and Y. Shim, “Detection of fatal therapeutic misadventures by an urban medicolegal system,” J. Forensic Sci., vol. 38, no. 2, pp. 327–338, Mar. 1993. https://doi.org/10.1520/jfs13412j
  159. Starfield, “Is US health really the best in the world?,” JAMA, vol. 284, no. 4, pp. 483–485, Jul. 2000. https://doi.org/10.1001/jama.284.4.483
  160. Anderson, R. Davis, G. B. Hanna, and C. A. Vincent, “Surgical adverse events: a systematic review,” Am. J. Surg., vol. 206, no. 2, pp. 253–262, Aug. 2013. https://www.ncbi.nlm.nih.gov/pubmed/23642651
  161. R. Chiaratti, B. M. Garcia, K. F. Carvalho, T. S. Machado, F. K. da S. Ribeiro, and C. H. Macabelli, “The role of mitochondria in the female germline: Implications to fertility and inheritance of mitochondrial diseases: Role of mitochondria in the female germline,” Cell Biol. Int., vol. 42, no. 6, pp. 711–724, Jun. 2018. https://doi.org/10.1002/cbin.10947
  162. K. Pal, P. S. Ambulkar, B. R. Sontakke, J. E. Waghmare, M. R. Shende, and A. M. Tarnekar, “Role of nuclear and mitochondrial genes in human male infertility: a review,” The Nucleus, vol. 60, no. 2, pp. 209–220, Aug. 2017. https://doi.org/10.1007/s13237-017-0209-4
  163. Conti and F. Franciosi, “Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events,” Hum. Reprod. Update, vol. 24, no. 3, pp. 245–266, Jun. 2018. https://doi.org/10.1093/humupd/dmx040
  164. Bournique, M. Dall’Osto, J.-S. Hoffmann, and V. Bergoglio, “Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission,” Mutat. Res.-Fundam. Mol. Mech. Mutagen., vol. 808, pp. 62–73, Mar. 2018. https://doi.org/10.1016/j.mrfmmm.2017.08.002
  165. L. Tan and Y. G. Shi, “Tet family proteins and 5-hydroxymethylcytosine in development and disease,” Dev. Camb. Engl., vol. 139, no. 11, pp. 1895–1902, Jun. 2012. https://doi.org/10.1242/dev.070771
  166. W. Dean, “DNA methylation and demethylation: A pathway to gametogenesis and development: DNA methylation dynamics in mouse embryos,” Mol. Reprod. Dev., vol. 81, no. 2, pp. 113–125, Feb. 2014. https://doi.org/10.1002/mrd.22280
  167. J. Briscoe and S. Small, “Morphogen rules: design principles of gradient-mediated embryo patterning,” Development, vol. 142, no. 23, pp. 3996–4009, Dec. 2015. https://doi.org/10.1242/dev.129452
  168. J. Simons and A. J. Pellionisz, “Genomics, morphogenesis and biophysics: Triangulation of Purkinje cell development,” Cerebellum, vol. 5, no. 1, pp. 27–35, Mar. 2006. https://doi.org/10.1080/14734220500378581
  169. M. Turing, “The chemical basis of morphogenesis,” in Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp. 37-72., Biological Sciences., vol. 237, 641 vols., London, UK: The Royal Society, 1952, pp. 37–72. https://doi.org/10.1098/rstb.1952.0012
  170. K. Hogg and P. S. Western, “Refurbishing the germline epigenome: Out with the old, in with the new,” Semin. Cell Dev. Biol., vol. 45, pp. 104–113, Sep. 2015. https://doi.org/10.1016/j.semcdb.2015.09.012
  171. L. Prokopuk et al., “Loss of maternal EED results in postnatal overgrowth,” Clin. Epigenetics, vol. 10, no. 1, Dec. 2018. https://doi.org/10.1186/s13148-018-0526-8
  172. R. M. Kohli and Y. Zhang, “TET enzymes, TDG and the dynamics of DNA demethylation,” Nature, vol. 502, no. 7472, pp. 472–479, Oct. 2013. https://doi.org/10.1038/nature12750
  173. J. B. Fernandes et al., “FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination,” PLOS Genet., vol. 14, no. 4, p. e1007317, Apr. 2018. https://doi.org/10.1371/journal.pgen.1007317
  174. G. Stanton, “Regulation of the blood-testis barrier,” Semin. Cell Dev. Biol., vol. 59, pp. 166–173, Nov. 2016. https://doi.org/10.1016/j.semcdb.2016.06.018
  175. Wen et al., “Signaling pathways regulating blood–tissue barriers — Lesson from the testis,” Biochim. Biophys. Acta BBA - Biomembr., vol. 1860, no. 1, pp. 141–153, Jan. 2018. https://doi.org/10.1016/j.bbamem.2017.04.020
  176. L. P. Cheeseman, J. Boulanger, L. M. Bond, and M. Schuh, “Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes,” Nat. Commun., vol. 7, p. 13726, Dec. 2016. https://doi.org/10.1038/ncomms13726
  177. J. P. van den Berg, E. A. M. Westerbeek, F. R. M. van der Klis, G. A. M. Berbers, and R. M. van Elburg, “Transplacental transport of IgG antibodies to preterm infants: A review of the literature,” Early Hum. Dev., vol. 87, no. 2, pp. 67–72, Feb. 2011. https://doi.org/10.1016/j.earlhumdev.2010.11.003
  178. J. L. Oei et al., “Amphetamines, the pregnant woman and her children: a review,” J. Perinatol., vol. 32, no. 10, pp. 737–747, Oct. 2012. https://doi.org/10.1038/jp.2012.59
  179. E. Wood and C.-D. Walker, “Fetal and neonatal HPA axis,” Compr. Physiol., vol. 6, no. 1, pp. 33–62, Jan. 2016. https://doi.org/10.1002/cphy.c150005
  180. H. Nielsen, A. Larsen, and A. L. Nielsen, “DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?,” Arch. Toxicol., vol. 90, no. 2, pp. 231–245, Feb. 2016. https://doi.org/10.1007/s00204-014-1426-0
  181. Kozikowska et al., “Mercury concentrations in human placenta, umbilical cord, cord blood and amniotic fluid and their relations with body parameters of newborns,” Environ. Pollut., vol. 182, pp. 256–262, Nov. 2013. https://doi.org/10.1016/j.envpol.2013.07.030
  182. V. Kulvietis, V. Zalgeviciene, J. Didziapetriene, and R. Rotomskis, “Transport of nanoparticles through the placental barrier,” Tohoku J. Exp. Med., vol. 225, no. 4, pp. 225–234, 2011. https://doi.org/10.1620/tjem.225.225
  183. M. I. Linder et al., “Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins,” Dev. Cell, vol. 43, no. 2, pp. 141-156.e7, Oct. 2017. https://doi.org/10.1016/j.devcel.2017.08.020
  184. Y. Miyamura et al., “The deceptive nature of UVA-tanning versus the modest protective effects of UVB-tanning on human skin,” Pigment Cell Melanoma Res., vol. 24, no. 1, pp. 136–147, Feb. 2011. https://doi.org/10.1111/j.1755-148x.2010.00764.x
  185. Y. Huang et al., “Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols,” ACS Cent. Sci., vol. 3, no. 6, pp. 564–569, Jun. 2017.
  186. J.-C. Beani, “Ultraviolet A-induced DNA damage: role in skin cancer,” Bull. Acad. Natl. Med., vol. 198, no. 2, pp. 273–295, Feb. 2014. https://reference.medscape.com/medline/abstract/26263704
  187. Kobayashi et al., “Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis,” J. Invest. Dermatol., vol. 110, no. 5, pp. 806–810, May 1998. https://doi.org/10.1046/j.1523-1747.1998.00178.x
  188. D. Simon, L. Hong, and D. N. Peles, “Insights into melanosomes and melanin from some interesting spatial and temporal properties,” J. Phys. Chem. B, vol. 112, no. 42, pp. 13201–13217, Oct. 2008. https://doi.org/10.1021/jp804248h
  189. L. Zecca et al., “The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour,” J. Neural Transm.-Suppl., no. 65, pp. 145–155, 2003. https://link.springer.com/chapter/10.1007/978-3-7091-0643-3_8
  190. A. Zucca et al., “Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease,” Prog. Neurobiol., vol. 155, pp. 96–119, Aug. 2017. https://doi.org/10.1016/j.pneurobio.2015.09.012
  191. H. Lee, S.-Y. Baek, S. Y. Chun, J.-H. Lee, and H. Cho, “Specific visualization of neuromelanin-iron complex and ferric iron in the human post-mortem substantia nigra using MR relaxometry at 7T,” Neuroimage, vol. 172, pp. 874–885, May 2018. https://doi.org/10.1016/j.neuroimage.2017.11.035
  192. M.-T. Arango et al., “HLA-DRB1 the notorious gene in the mosaic of autoimmunity,” Immunol. Res., vol. 65, no. 1, pp. 82–98, Feb. 2017. https://doi.org/10.1007/s12026-016-8817-7
  193. M. F. Jennewein, B. Abu-Raya, Y. Jiang, G. Alter, and A. Marchant, “Transfer of maternal immunity and programming of the newborn immune system,” Semin. Immunopathol., vol. 39, no. 6, pp. 605–613, Nov. 2017. https://doi.org/10.1007/s00281-017-0653-x
  194. S. L. Bridgman et al., “Infant gut immunity: a preliminary study of IgA associations with breastfeeding,” J. Dev. Orig. Health Dis., vol. 7, no. 01, pp. 68–72, Feb. 2016. https://doi.org/10.1017/S2040174415007862 https://doi.org/10.1017/S2040174415007862
  195. Liu et al., “Immunoglobulin gene expression in umbilical cord blood-derived CD34(+) hematopoietic stem/progenitor cells,” Gene, vol. 575, no. 1, pp. 108–117, Jan. 2016. https://doi.org/10.1016/j.gene.2015.08.046
  196. Jiang et al., “IgG and IgA with potential microbial-binding activity are expressed by normal human skin epidermal cells,” Int. J. Mol. Sci., vol. 16, no. 2, pp. 2574–2590, Jan. 2015. https://doi.org/10.3390/ijms16022574
  197. D. Finkelman, M. V. Khodoun, and R. Strait, “Human IgE-independent systemic anaphylaxis,” J. Allergy Clin. Immunol., vol. 137, no. 6, pp. 1674–1680, Jun. 2016. https://doi.org/10.1016/j.jaci.2016.02.015
  198. Bodis, V. Toth, and A. Schwarting, “Role of human leukocyte antigens (HLA) in autoimmune diseases,” Rheumatol. Ther., vol. 5, no. 1, pp. 5–20, Jun. 2018. https://doi.org/10.1007/s40744-018-0100-z
  199. Gianfrani, L. Pisapia, S. Picascia, M. Strazzullo, and G. Del Pozzo, “Expression level of risk genes of MHC class II is a susceptibility factor for autoimmunity: New insights,” J. Autoimmun., vol. 89, pp. 1–10, May 2018. https://doi.org/10.1016/j.jaut.2017.12.016
  200. D. Finkelman, M. V. Khodoun, and R. Strait, “Human IgE-independent systemic anaphylaxis,” J. Allergy Clin. Immunol., vol. 137, no. 6, pp. 1674–1680, Jun. 2016. https://doi.org/10.1016/j.jaci.2016.02.015
  201. Watad et al., “Seasonality and autoimmune diseases: The contribution of the four seasons to the mosaic of autoimmunity,” J. Autoimmun., vol. 82, pp. 13–30, Aug. 2017. https://doi.org/ 10.1016/j.jaut.2017.06.001
  202. N. L. Bragazzi et al., “Advances in our understanding of immunization and vaccines for patients with systemic lupus erythematosus,” Expert Rev. Clin. Immunol., vol. 13, no. 10, pp. 939–949, 2017. https://doi.org/10.1080/1744666x.2017.1361321
  203. Dardiotis and D. P. Bogdanos, “Epstein-Barr virus: in search of a causal or a casual relationship between the virus and the disease?,” Isr. Med. Assoc. J., vol. 20, no. 2, pp. 111–113, Feb. 2018.
  204. G. Dórea, “Exposure to mercury and aluminum in early life: developmental vulnerability as a modifying factor in neurologic and immunologic effects,” Int. J. Environ. Res. Public. Health, vol. 12, no. 2, pp. 1295–1313, Jan. 2015. https://doi.org/10.3390/ijerph120201295
  205. R. Snapp, D. B. Boyer, L. C. Peterson, and C. W. Svare, “The contribution of dental amalgam to mercury in blood,” J. Dent. Res., vol. 68, no. 5, pp. 780–785, May 1989. https://doi.org/10.1177/00220345890680050501
  206. J. Vimy, Y. Takahashi, and F. L. Lorscheider, “Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings,” Am. J. Physiol., vol. 258, no. 4 Pt 2, pp. R939-945, Apr. 1990. https://doi.org/10.1152/ajpregu.1990.258.4.r939
  207. L. Lorscheider, M. J. Vimy, A. O. Summers, and H. Zwiers, “The dental amalgam mercury controversy — inorganic mercury and the CNS; genetic linkage of mercury and antibiotic resistances in intestinal bacteria,” Toxicology, vol. 97, no. 1–3, pp. 19–22, Mar. 1995. https://doi.org/10.1016/0300-483x(94)02964-v
  208. E. Haley, “Mercury toxicity: Genetic susceptibility and synergistic effects,” Med. Veritas, vol. 2, pp. 535–542, 2005. https://doi.org/10.1588/medver.2005.02.00070
  209. C. Marques, J. V. E. Bernardi, J. G. Dórea, M. de Fatima R Moreira, and O. Malm, “Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age,” Environ. Pollut., vol. 187, pp. 130–135, Apr. 2014. https://doi.org/10.1016/j.envpol.2014.01.004
  210. J. G. Dórea, “Methylmercury in colostrum and milk of Japanese mothers,” Chemosphere, vol. 137, p. 221, Oct. 2015. https://doi.org/10.1016/j.chemosphere.2015.06.100
  211. Y. Park et al., “Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study,” Sci. Total Environ., vol. 612, pp. 876–883, Jan. 2018.
  212. Sage and N. Shikazono, “Radiation-induced clustered DNA lesions: Repair and mutagenesis,” Free Radic. Biol. Med., vol. 107, pp. 125–135, Jun. 2017. https://doi.org/10.1016/j.freeradbiomed.2016.12.008
  213. E. Depuydt, J. Beert, E. Bosmans, and G. Salembier, “Human Papillomavirus (HPV) virion induced cancer and subfertility, two sides of the same coin,” Facts Views Vis. Obgyn, vol. 8, no. 4, pp. 211–222, Dec. 2016.
  214. Shamriz and Y. Shoenfeld, “Infections: a double-edge sword in autoimmunity,” Curr. Opin. Rheumatol., vol. 30, no. 4, pp. 365–372, Jul. 2018. https://doi.org/10.1097/bor.0000000000000490
  215. Garolla, D. Pizzol, and C. Foresta, “The role of human papillomavirus on sperm function,” Curr. Opin. Obstet. Gynecol., vol. 23, no. 4, pp. 232–237, Aug. 2011. https://doi.org/10.1097/gco.0b013e328348a3a4
  216. C. Freitas, F. C. Mariz, M. a. R. Silva, and A. L. S. Jesus, “Human papillomavirus vertical transmission: review of current data,” Clin. Infect. Dis., vol. 56, no. 10, pp. 1451–1456, May 2013. https://doi.org/10.1093/cid/cit066
  217. Gimenes et al., “Male infertility: a public health issue caused by sexually transmitted pathogens,” Nat. Rev. Urol., vol. 11, no. 12, pp. 672–687, Dec. 2014. https://doi.org/10.1038/nrurol.2014.285
  218. Damke et al., “Male Partners of Infertile Couples with Seminal Infections of Human Papillomavirus Have Impaired Fertility Parameters,” Biomed Res. Int., p. 4684629, 2017. https://doi.org/10.1155/2017/4684629
  219. U. Schagdarsurengin, P. Western, K. Steger, and A. Meinhardt, “Developmental origins of male subfertility: role of infection, inflammation, and environmental factors,” Semin. Immunopathol., vol. 38, no. 6, pp. 765–781, Nov. 2016. https://doi.org/10.1007/s00281-016-0576-y
  220. J. Gruen R., “Human MHC class III and IV genes and disease associations,” Front. Biosci., vol. 6, no. 1, p. d960, 2001. https://doi.org/10.2741/gruen
  221. Milner M., “Genetic organization of the human MHC class III region,” Front. Biosci., vol. 6, no. 1, p. d914, 2001. https://doi.org/10.2741/milner
  222. Ballanti et al., “Complement and autoimmunity,” Immunol. Res., vol. 56, no. 2–3, pp. 477–491, Jul. 2013.
  223. Bajic, S. E. Degn, S. Thiel, and G. R. Andersen, “Complement activation, regulation, and molecular basis for complement-related diseases,” Embo J., vol. 34, no. 22, pp. 2735–2757, Nov. 2015. https://doi.org/10.15252/embj.201591881
  224. Tedesco et al., “Pathogenic role of complement in antiphospholipid syndrome and therapeutic implications,” Front. Immunol., vol. 9, p. 1388, Jun. 2018.
  225. Hakem, “DNA-damage repair; the good, the bad, and the ugly,” EMBO J., vol. 27, no. 4, pp. 589–605, Feb. 2008. https://doi.org/10.1038/emboj.2008.15
  226. A. Shaw and J. McEachern, Eds., Toward a Theory of Neuroplasticity, 1 edition. Philadelphia: Psychology Press, 2001.
  227. J. K. Lee and P. Vadas, “Anaphylaxis: mechanisms and management,” Clin. Exp. Allergy, vol. 41, no. 7, pp. 923–938, Jul. 2011.
  228. Liu and S. K. Sathe, “Food allergen epitope mapping,” J. Agric. Food Chem., vol. 66, no. 28, pp. 7238–7248, Jul. 2018. https://doi.org/10.1021/acs.jafc.8b01967
  229. Y. M. Taalab et al., “Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK),” Rev. Neurosci., vol. 29, no. 4, pp. 387–415, Jun. 2018. https://doi.org/10.1515/revneuro-2017-0071
  230. Z. A. Shah, D. Zhao, T. Hussain, N. Sabir, and L. Yang, “Regulation of microRNAs-mediated autophagic flux: a new regulatory avenue for neurodegenerative diseases with focus on prion diseases,” Front. Aging Neurosci., vol. 10, p. 139, May 2018. https://doi.org/10.3389/fnagi.2018.00139
  231. Scheckel and A. Aguzzi, “Prions, prionoids and protein misfolding disorders,” Nat. Rev. Genet., vol. 19, no. 7, pp. 405–418, Jul. 2018. https://doi.org/10.1038/s41576-018-0011-4
  232. Kanata et al., “MicroRNA alterations in the brain and body fluids of humans and animal prion disease models: current status and perspectives,” Front. Aging Neurosci., vol. 10, p. 220, Jul. 2018. https://doi.org/10.3389/fnagi.2018.00220
  233. Majumder and O. Chakrabarti, “Lysosomal quality control in prion diseases,” Mol. Neurobiol., vol. 55, no. 3, pp. 2631–2644, Mar. 2018. https://doi.org/10.1007/s12035-017-0512-8
  234. G. Hovanessian, C. Soundaramourty, D. El Khoury, I. Nondier, J. Svab, and B. Krust, “Surface Expressed Nucleolin Is Constantly Induced in Tumor Cells to Mediate Calcium-Dependent Ligand Internalization,” Plos One, vol. 5, no. 12, p. e15787, Dec. 2010. https://doi.org/10.1371/journal.pone.0015787
  235. M. Haschka, G. Karbon, L. L. Fava, and A. Villunger, “Perturbing mitosis for anti-cancer therapy: is cell death the only answer?,” Embo Rep., vol. 19, no. 3, p. UNSP e45440, Mar. 2018. https://doi.org/10.15252/embr.201745440
  236. L. M. Ogawa and S. J. Baserga, “Crosstalk between the nucleolus and the DNA damage response,” Mol. Biosyst., vol. 13, no. 3, pp. 443–455, Mar. 2017. https://doi.org/10.1039/c6mb00740f
  237. Luchinat et al., “Identification of a novel nucleophosmin-interaction motif in the tumor suppressor p14arf,” Febs J., vol. 285, no. 5, pp. 832–847, Mar. 2018. https://doi.org/10.1111/febs.14373
  238. Di Matteo et al., “Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7 gamma,” Oncogenesis, vol. 6, p. e379, Sep. 2017.
  239. M. S. Lindstrom, D. Jurada, S. Bursac, I. Orsolic, J. Bartek, and S. Volarevic, “Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis,” Oncogene, vol. 37, no. 18, pp. 2351–2366, May 2018. https://doi.org/10.1038/s41388-017-0121-z
  240. D. Scott and M. Oeffinger, “Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair,” Biochem. Cell Biol., vol. 94, no. 5, pp. 419–432, Oct. 2016. https://doi.org/10.1139/bcb-2016-0068
  241. B. J. Main, C. J. Italiano, and K. J. Rodgers, “Investigation of the interaction of beta-methylamino-L-alanine with eukaryotic and prokaryotic proteins,” Amino Acids, vol. 50, no. 3–4, pp. 397–407, Apr. 2018. https://doi.org/10.1007/s00726-017-2525-z
  242. B. J. Main, R. A. Dunlop, and K. J. Rodgers, “The use of L-serine to prevent beta-methylamino-L-alanine (BMAA)-induced proteotoxic stress in vitro,” Toxicon, vol. 109, pp. 7–12, Jan. 2016. https://doi.org/10.1016/j.toxicon.2015.11.003
  243. R. van Onselen, N. A. Cook, R. R. Phelan, and T. G. Downing, “Bacteria do not incorporate beta-N-methylamino-L-alanine into their proteins,” Toxicon, vol. 102, pp. 55–61, Aug. 2015. https://doi.org/10.1016/j.toxicon.2015.05.014
  244. R. van Onselen and T. G. Downing, “BMAA-protein interactions: A possible new mechanism of toxicity,” Toxicon, vol. 143, pp. 74–80, Mar. 2018. https://doi.org/10.1016/j.toxicon.2018.01.011
  245. Rauk, “beta-N-Methylamino-L-alanine (BMAA) not involved in Alzheimer’s disease,” J. Phys. Chem. B, vol. 122, no. 16, pp. 4472–4480, Apr. 2018. https://doi.org/10.1021/acs.jpcb.8b01641
  246. K. J. Rodgers and N. Shiozawa, “Misincorporation of amino acid analogues into proteins by biosynthesis,” Int. J. Biochem. Cell Biol., vol. 40, no. 8, pp. 1452–1466, 2008. https://doi.org/10.1016/j.biocel.2008.01.009
  247. Samsel and S. Seneff, “Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases,” Entropy, vol. 15, no. 4, pp. 1416–1463, Apr. 2013. https://doi.org/10.3390/e15041416
  248. Samsel and S. Seneff, “Glyphosate pathways to modern diseases V: Amino acid analogue of glycine in diverse proteins,” J. Biol. Phys. Chem., vol. 16, pp. 9–46, 2016. https://doi.org/10.4024/03sa16a.jbpc.16.01
  249. D. Cattani et al., “Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity,” Toxicology, vol. 320, pp. 34–45, Jun. 2014. https://doi.org/10.1016/j.tox.2014.03.001
  250. M. G. Zavala-Cerna, E. A. Martinez-Garcia, O. Torres-Bugarin, B. Rubio-Jurado, C. Riebeling, and A. Nava, “The clinical significance of posttranslational modification of autoantigens,” Clin. Rev. Allergy Immunol., vol. 47, no. 1, pp. 73–90, Aug. 2014. https://doi.org/10.1007/s12016-014-8424-0
  251. J. J. Hogan, G. S. Markowitz, and J. Radhakrishnan, “Drug-induced glomerular disease: immune-mediated injury,” Clin. J. Am. Soc. Nephrol., vol. 10, no. 7, pp. 1300–1310, Jul. 2015. https://doi.org/10.2215/cjn.01910215
  252. G. Worst et al., “Cell-free expression with the toxic amino acid canavanine,” Bioorg. Med. Chem. Lett., vol. 25, no. 17, pp. 3658–3660, Sep. 2015.
  253. J. Akaogi et al., “Role of non-protein amino acid L-canavanine in autoimmunity,” Autoimmun. Rev., vol. 5, no. 6, pp. 429–435, Jul. 2006.
  254. R. van Onselen, S. Downing, G. Kemp, and T. Downing, “Investigating beta-N-Methylamino-L-alanine misincorporation in human cell cultures: a comparative study with known amino acid analogues,” Toxins, vol. 9, no. 12, p. 400, Dec. 2017. https://doi.org/10.3390/toxins9120400
  255. R. van Onselen, L. Venables, M. van de Venter, and T. G. Downing, “beta-N-Methylamino-L-Alanine toxicity in PC12: excitotoxicity vs. misincorporation,” Neurotox. Res., vol. 33, no. 1, pp. 15–23, Jan. 2018. https://doi.org/10.1007/s12640-017-9743-8
  256. M. D. Vaughan, Z. Su, E. Daub, and J. F. Honek, “Intriguing cellular processing of a fluorinated amino acid during protein biosynthesis in Escherichia coli,” Org. Biomol. Chem., vol. 14, no. 38, pp. 8942–8946, 2016. https://doi.org/10.1039/c6ob01690a
  257. G. Worst et al., “Residue-specific incorporation of noncanonical amino acids into model proteins using an escherichia coli cell-free transcription-translation system,” Jove-J. Vis. Exp., no. 114, p. e54273, Aug. 2016. https://doi.org/10.3791/54273
  258. Konovalova, T. Hilander, F. Loayza-Puch, K. Rooijers, R. Agami, and H. Tyynismaa, “Exposure to arginine analog canavanine induces aberrant mitochondrial translation products, mitoribosome stalling, and instability of the mitochondrial proteome,” Int. J. Biochem. Cell Biol., vol. 65, pp. 268–274, Aug. 2015. https://doi.org/10.1016/j.biocel.2015.06.018
  259. Hilander et al., “Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria,” Nucleic Acids Res., vol. 46, no. 2, pp. 849–860, Jan. 2018. https://doi.org/10.1093/nar/gkx1231
  260. E. Kartvelishvili, M. Peretz, D. Tworowski, N. Moor, and M. Safro, “Chimeric human mitochondrial PheRS exhibits editing activity to discriminate nonprotein amino acids,” Protein Sci., vol. 25, no. 3, pp. 618–626, Mar. 2016. https://doi.org/10.1002/pro.2855
  261. G. Parks, G. Cooper, M. Dooley, M. Park, E. Treadwell, and G. Gilkeson, “Childhood agricultural and adult occupational exposures to organic dusts in a population-based case–control study of systemic lupus erythematosus,” Lupus, vol. 17, no. 8, pp. 711–719, Aug. 2008. https://doi.org/10.1177/0961203308089436
  262. G. Parks, J. A. Hoppin, A. J. De Roos, K. H. Costenbader, M. C. Alavanja, and D. P. Sandler, “Rheumatoid arthritis in agricultural health study spouses: associations with pesticides and other farm exposures,” Environ. Health Perspect., vol. 124, no. 11, Jun. 2016. https://doi.org/10.1289/ehp129
  263. R. Mesnage, M. Arno, M. Costanzo, M. Malatesta, G.-E. Séralini, and M. N. Antoniou, “Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure,” Environ. Health, vol. 14, no. 1, Dec. 2015. https://doi.org/10.1186/s12940-015-0056-1
  264. M. Milan et al., “Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: Transcriptional responses in the mussel Mytilus galloprovincialis,” Environ. Pollut., vol. 237, pp. 442–451, Jun. 2018. https://doi.org/10.1016/j.envpol.2018.02.049
  265. R. Mesnage, B. Bernay, and G.-E. Séralini, “Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity,” Toxicology, vol. 313, no. 2–3, pp. 122–128, Nov. 2013. https://doi.org/10.1016/j.tox.2012.09.006
  266. Y. A. Bali, S. Ba-Mhamed, and M. Bennis, “Behavioral and immunohistochemical study of the effects of subchronic and chronic exposure to glyphosate in mice,” Front. Behav. Neurosci., vol. 11, p. 146, Aug. 2017. https://doi.org/10.3389/fnbeh.2017.00146
  267. N. Yu et al., “Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure,” Biochem. Biophys. Res. Commun., vol. 501, no. 4, pp. 838–845, Jul. 2018.
  268. Ji, L. Xu, Z. Wang, X. Fan, and L. Wu, “Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation,” Exp. Ther. Med., vol. 15, no. 3, pp. 2457–2467, Mar. 2018. https://doi.org/10.3892/etm.2017.5669
  269. Javier Baier, C. Eugenia Gallegos, R. Raisman-Vozari, and A. Minetti, “Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice,” Neurotoxicol. Teratol., vol. 64, pp. 63–72, Dec. 2017. https://doi.org/10.1016/j.ntt.2017.10.004
  270. R. Brenner et al., “Familial Mediterranean Fever and incidence of cancer: an analysis of 8,534 israeli patients with 258,803 person-years,” Arthritis Rheumatol., vol. 70, no. 1, pp. 127–133, Jan. 2018. https://doi.org/10.1002/art.40344
  271. W. Schroeder and S. M. Sheikh, “The complex genetics of common variable immunodeficiency,” J. Investig. Med. Off. Publ. Am. Fed. Clin. Res., vol. 52, no. 2, pp. 90–103, Mar. 2004. https://doi.org/10.1136/jim-52-02-17
  272. S. Georgin-Lavialle et al., “Familial Mediterranean fever,” Rev. Med. Interne, vol. 39, no. 4, pp. 240–255, Apr. 2018.
  273. C. G. Rida, G. Cantuaria, M. D. Reid, O. Kucuk, and R. Aneja, “How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity,” Cancer Metastasis Rev., vol. 34, no. 4, pp. 703–713, Dec. 2015.https://doi.org/10.1007/s10555-015-9590-0
  274. L. Tomljenovic and C. A. Shaw, “Do aluminum vaccine adjuvants contribute to the rising prevalence of autism?,” J. Inorg. Biochem., vol. 105, no. 11, pp. 1489–1499, Nov. 2011. https://doi.org/10.1016/j.jinorgbio.2011.08.008
  275. L. Tomljenovic and C. A. Shaw, “Aluminum vaccine adjuvants: are they safe?,” Curr. Med. Chem., vol. 18, no. 17, pp. 2630–2637, 2011. https://doi.org/10.2174/092986711795933740
  276. C. A. Shaw and L. Tomljenovic, “Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity,” Immunol. Res., vol. 56, no. 2–3, pp. 304–316, Jul. 2013. https://doi.org/10.1007/s12026-013-8403-1
  277. N. Agmon-Levin, G. R. V. Hughes, and Y. Shoenfeld, “The spectrum of ASIA: ‘Autoimmune (Auto-inflammatory) Syndrome Induced by Adjuvants,’” Lupus, vol. 21, no. 2, pp. 118–120, Feb. 2012. https://doi.org/10.1177/0961203311429316
  278. C. Perricone, S. Colafrancesco, R. D. Mazor, A. Soriano, N. Agmon-Levin, and Y. Shoenfeld, “Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects,” J. Autoimmun., vol. 47, pp. 1–16, Dec. 2013.https://doi.org/10.1016/j.jaut.2016.05.011
  279. S. Esposito, E. Prada, M. V. Mastrolia, G. Tarantino, C. Codecà, and D. Rigante, “Autoimmune/inflammatory syndrome induced by adjuvants (ASIA): clues and pitfalls in the pediatric background,” Immunol. Res., vol. 60, no. 2–3, pp. 366–375, Dec. 2014.https://doi.org/10.1007/s12026-014-8586-0
  280. S. Goldman and N. Z. Miller, “Relative trends in hospitalizations and mortality among infants by the number of vaccine doses and age, based on the Vaccine Adverse Event Reporting System (VAERS), 1990-2010,” Hum. Exp. Toxicol., vol. 31, no. 10, pp. 1012–1021, Oct. 2012. https://doi.org/10.1177/0960327112440111

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper