Carbon Sequestration Potential of Shea Trees (Vitellaria paradoxa C.F. Gaertn.) in Parklands under Two Soil Types (Ferralsol and Cambisol) in Northern Côte d'Ivoire

Carbon Sequestration Potential of Shea Trees (Vitellaria paradoxa C.F. Gaertn.) in Parklands under Two Soil Types (Ferralsol and Cambisol) in Northern Côte d'Ivoire

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Alui Konan Alphonse, Diarrassouba Nafan, Yao Saraka Didier Martial

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2265 64 225 14-23 Volume 9 - Feb 2020

Abstract

This study was conducted to assess carbon sequestration potential of shea trees in four shea parks in Northern Côte d'Ivoire to fight against climate change. The methodology used consisted in the delimitation of 2 ha of plot in shea parkland located in Ferkéssédougou, Ouangolodougou, Boundiali and Tengrela. On each plot delimited within these parklands, forests inventories were carried out and stem diameter at 1.30 m aboveground (DBH ≥ 5 cm) of the shea trees were measured. The dendrometric data collected made it possible to elaborate the structure of the shea trees in parkland, to estimate the biomass and the stocks of sequestered carbon. The results showed that shea populations, irrespective of the study site, showed a "reversed J" diameter distribution with decreasing individuals. The spatial distribution of the population of shea trees in Boundiali and Ferkéssédougou parklands is regular while it is aggregative in Ouangolodougou and Tengrela parklands. The spatial distribution of shea trees depends on the type of soils. Of all the sites that are mostly bushy savannas, sequestered CO2 equivalents are high: 70.83 t.ha-1 at Boundiali, 49.47 t.ha-1 at Ferkéssédougou, 215 t.ha-1 at Ouangolodougou and 130 t.ha-1 at Tengrela. This study shows that agroforestry is to be promoted in Northern Côte d'Ivoire through the protection of shea tree parklands that limit greenhouse gas emissions in the atmosphere, especially in Northern Côte d’Ivoire. This will certainly facilitate Côte d'Ivoire's access to the carbon market.

Keywords

Shea Tree, Parklands, Soils, Carbon Stock, Northern Côte d’Ivoire

References

  1. Boulet R., Chauvel A., Humbel F.X. and Lucas Y. (1982). Analyse structurale et cartographie en pédologie I Prise en compte de l’organisation bidimensionnelle de la couverture pédologique : les études de toposéquences et leurs principaux apports à la connaissance des sols. Cah. ORSTOM, Sér. Pédol., 19 (4) : 309-321.
  2. Canard A. and Poinsot D. (2004). Quelques méthodes statistiques typiques de l’étude des populations et des peuplements par la méthode des quadrats. Fiche technique, Université de Renne1, 34p. https://perso.univrennes1.fr/denis.poinsot/POP/Rapport_Penvins/instructions_et_conseils/poly%20Canard.pdf
  3. Chave J., Brown S., Cairns M. A., Chambers J. Q., Eamus D., Folster H., Fromard F., Higuchi N., Kira T., Lescuyer J.P., Nelson B., Ogawa H., Puig H., Reira B. and Yamakura T. (2005). Tree allometry and improved estimation of carbon stock and balance in tropical forest. Oecologia 145: 87-99. http://dx.doi.org/10.1007/s00442-005-0100-x
  4. Djomo A.N., Ibrahima A., Saborowski J. and Gravenhorst G. (2010). Allometric equations for bio- mass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management. 260: 1873-1885. https://doi.org/10.1016/j.foreco.2010.08.034
  5. Djossa B. A., Fahr J., Wiegand T., Ayihouénou B. E., Kalko E. K. V. and Sinsin B. A. (2008). Land use impact on Vitellaria paradoxa C.F. Gaertn. stand structure and distribution patterns: a comparison of the Biosphere Reserve of Pendjari and farmed lands in Atacora district in Benin. Agroforest. Syst. 72 : 205-220. DOI: 10.1007/s10457-007-9097-y .
  6. Dotchamou T.F.O., Atindogbe G., Fonton N. H. and Azihou F. A. (2016). Caractérisation de la répartition spatiale des arbres de Parkia Biglobosa (Jacq.) R. BR. Au Bénin. Science de la vie, de la terre et de l’agronomie. Rev CAMES. 04 : 59-67. http://publication.lecames.org/index.php/svt/article/view/562
  7. FAO. (2006). Guide pour l’inventaire national des gaz à effet de serre agriculture, foresterie et autre usage des terres. Institute for Global Environnemental Stratégies, Japon 4 : 46-52.
  8. Fonton N. H., Atindogbe G., Fandohan B., Lejeune P. and Ligot G. (2012). Structure spatiale des arbres des savanes boisées et forêts claires soudaniennes : implication pour les enrichissements forestiers. Biotechnol. Agron. Soc. Environ, 16(4) :429-440. https://popups.uliege.be:443/1780-4507/index.php?id=9094.
  9. Gnangle PC, Egah J, Baco MN, Gbemavo CDSJ, Kakaï RG and Sokpon N. 2012. Perceptions locales du changement climatique et mesures d’adaptation dans la gestion des parcs à karité au Nord Bénin. Int. J. Biol. Chem. Sci., 6(1): 136149. DOI: http://dx.doi.org/10.4314/ ijbcs.v6i1.13.
  10. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. https://doi.org/10.1007/s10457-009-9229-7.
  11. Kombaté B., Dourma M., Folega F., Woegan A Y., Wala k and Akpagana Koffi, (2019). Structure et potentiel de séquestration de carbone des formations boisées du Plateau Akposso en zone sub-humide au Togo. Afrique Science 15(2):70 – 79.
  12. Luedeling E and Neufeldt H. (2012). Carbon sequestration potential of parkland agroforestry in the Sahel. Climatic Change 115: 443. https://doi.org/10.1007/s10584-012-0438-0.
  13. Montagnini F. and Nair P.K.R. (2004).Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61–2:281–295. https://doi.org/10.1023/B:AGFO.0000029005.92691.79.
  14. N’Guessan K A., Diarrassouba N., Alui K. A., Nangha K. Y., Fofana I. J. and Yao-Kouamé A. (2015). Indicateurs de dégradation physique des sols dans le nord de la Côte d’Ivoire : cas de Boundiali et Ferkessédougou. Afrique science, 11 (3). http://www.afriquescience.info / document.php ?id=4711. ISSN 1813-548X. pp 115-128.
  15. Obame Engone J-P. (2015). Structure spatiale et dispersion des communautés d’arbres en forêt tropicale humide du Gabon : rôle des facteurs édaphiques et du gradient de chablis. Thèse de doctorat, Université de Laval, Québec, Canada. 149 p. http://hdl.handle.net/20.500.11794/26583
  16. Pascal J-P. (2003). Description et dynamique des milieux forestiers. Notions sur les structures et dynamiques des forêts tropicales. Article, pp 118-130. DOI: https://doi.org/10.4267/2042/5765
  17. Ræbild A., Hansen U. B. and Kambou S. (2011). Regeneration of Vitellaria paradoxa and Parkia biglobosa in parkland in Southern Burkina Faso. Agroforestry Systems, 85 (3): 443-453. Doi 10.1007/s10457-011-9397-0.
  18. Tsoumou B.R., Lumandé K. J., Kampé J. and Nzila J. D. (2016). Estimation de la quantité de Carbone séquestré par la Forêt Modèle de Dimonika (Sudouest de la République du Congo). Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo, 6 :39-45.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper