Suaeda vermiculata Forssk. ex J.F. Gmel.: Structural Characteristics and Adaptations to Salinity and Drought: A Review

Suaeda vermiculata Forssk. ex J.F. Gmel.: Structural Characteristics and Adaptations to Salinity and Drought: A Review

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Gamal E.B. El Ghazali

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2268 22 78 28-33 Volume 9 - Feb 2020

Abstract

The aim of the present study is to review the structural characteristics possessed and the adaptations implemented by Suaeda vermiculata; a partially succulent habitat-indifferent desert halophyte, to cope with salinity and drought stresses and gaining insight into its tolerance mechanisms. These characteristics include succulence, leaf burns, leaf shedding, stunted growth habit, change in colour of the leaves, thick cuticular layers and sunken stomata. Deep rooting system and high root/shoot ratio are two more drought adaptations that may also be incorporated as tolerance mechanisms, but no previous studies were encountered for S. vermiculata. These adaptations allowed S. vermiculata to tolerate broad distribution in arid and semi-arid regions and variable habitats including salinity. The presence of small glossy seeds devoid of structures enhancing dispersal, limit its range of spatial dispersal and may be regarded as an inherent limit to tolerance mechanisms.

Keywords

Succulence, Leaf Burns, Leaf Shedding, Stunted Growth, Sunken Stomata

References

  1. Abrol, I.P, Yadav, J.S.P and Massoud, F.I. (1988). Saline soils and their management. In: salt-affected soils and their managements. FAO Soils Bulletin 39 (Food and Agriculture Organization of the United Nations, Rome). https://www.fao.org/3/x5871e04.htm#3
  2. Acosta-Motos, J.R., Ortuno, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. and Hernandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(18):1-38. https://doi.10.3390/agronomy7010018
  3. African Plant Database (2019). Suaeda vermiculata Forssk. ex J.F. Gmel. http://www.ville-ge.ch/musinfo/bd/cjb/africa/details.php?Langue=an&id= 26365.
  4. Al-Farrajii, F. and Al-Hilli, M.R. (1994). Halophytes and desertification control in Iraq. In: Squires V. and Ayoub, A.T. (eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands, 239-248. Springer Science and Business Media, B.V. https://link.springer.com/chapter/10.1007/978-94-011-0818-8_20.
  5. Alhejoj, I., Bandel, K. and Salameh, E. (2015). Floral species as environmental quality indicators in Jordan: high salinity and alkalinity environments. Journal of Environmental Protection, 6:494-514. http://dx.doi.org/10.4236/jep.2015.65047.
  6. Al-Shamsi, N., El-Keblawy, A., Mosa, K.A. and Navarro, T. (2018). Drought tolerance and germination response to light and temperature for seeds of saline and non-saline habitats of the habitat-indifferent desert halophyte Suaeda vermiculata. Acta Physiologiae Plantarum, 40(11):200. https://doi.org/10.1007/s11738-018-2771-z.
  7. Al-Tohamy, R., Ali, S.S., Saad-Allah, K., Fareed, M., Ali, A., El-Badry, A., El-Zawawy, N.A., Wu, J., Sun, J., Mao, G. and Rupani, P.F. (2018). Phytochemical analysis and assessment of antioxidant and antimicrobial activities of some medicinal plant species from Egyptian flora. Journal of Applied Biomedicine, 16:289-300. https://doi.10.1016/J.Jab.2018.001
  8. Ashraf, M. and Harris, J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166:3-16. https://doi.10.1016/jplantsci.2003.3.10.024
  9. Atkinson, N.J. and Urwin, P.E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10):3523-3543. https://doi.org/10.1093/jxb/ers100.
  10. Atwell, B.J., Kriedemann, P.E., Turnbull, C.G.N., Eamus, D. and Bieleski (1999). Plants in action, adaptation in nature, performance in cultivation. The Australian Society of Plant Physiologists, Macmillan Publishers, Australia. https://abebooks.co.uk/9780732944391
  11. Baneh, H.D., Hassani, A. and Shaieste, F.G. (2014). Effects of salinity on leaf mineral composition and salt injury symptoms of some Iranian wild grapevine (Vitis vinifera L. ssp. Sylvestris) genotypes. Journal International des Sciences de la Vigne et du Vin, 48(4):231-235. https://doi.org/10.20870/oeno-one.2014.48.4.1692
  12. Bartha, C., Fodorpataki, L., Martinez-Ballesta, M.C., Popescu, O. and Carvajal, M. (2015). Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of Applied Botany and Food Quality, 88:42-48. https://doi. 10.5073/JABFQ.2015.088.008. 12.
  13. Baskin, T.I., Cork, A., Williamson, R.E. and Gorst, J.R. (1995). Stunted plant 1, a gene required for expansion in rapidly elongating but not dividing cells and mediating root growth responses to applied cytokinin. Plant Physiology, 107:233-243. https://doi.10.1104/pp.107.1.233.
  14. Batanouny, K.H. (1990). Adaptation of plants to saline conditions in arid regions. In: Lieth, H. and Al Masoon A. (eds.), Towards the rational use of high salinity tolerant plants, vol. 1: deliberation about high salinity tolerant plants and ecosystems, Springer Verlag Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-94-011-1858-3_41.
  15. Batanouny, K.H. (2001). Plants in the deserts of the Middle East. Springer Verlag Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-662-04480-3_12.
  16. Bazzaz, F.A. (1991). Habitat selection in plants. The American Naturalists, 137:116-130. https://www.jstor.org/stable/2462291
  17. Beemster, G.T.S. and Baskin, T.I. (2000). Stunted plant 1, mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiology, 124(4):1718- 1727. https://doi.10.1104/pp.124.4.1718.
  18. Bisht, T.S., Rawat, L., Chakraborty, B. and Yadav, V. (2018). A recent advances in use of plant growth regulators (PGRs) in fruit crops - A review. International Journal of Current Microbiology and Applied Sciences, 7(5):1307-1336. https://doi.10.20546/ IJcmas.2018.705.159.
  19. Borghesi, E., Gonzalez-Miret, M.L., Escudero-Gilete, M.L., Malorgio, F., Heredia, F.J. and Melendez-Martinez, A.J. (2011). Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. Journal of Agriculture and Food Chemistry, 59(21):11676-11682. https://doi.10.1021/jf2021623.
  20. Boulos, L. (1991). Notes on Suaeda Forssk. ex Scop. Studies in the Chenopodiaceae of Arabia:2. Kew Bulletin, 46(2):291-296. https://doi.10.2307/4110599
  21. Carassay, L.R., Bustos, D.A., Golberg, A.D. and Taleisnik, E. (2012). Tipburn in salt affected lettuce (Lactuca sativa L.) plants results from local oxidative stress. Journal of Plant Physiology, 169(3):285-293. https://doi.10.1016/j.jplph.2011.10.004.
  22. Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Romero, L. and Rutz, T.M. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany, 2012:726206. https://dx.doi.org/10.1155/2012/726206.
  23. Chandrasekher, C. and Ray, J.G. (2018). Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicology and Environmental Safety, 171:26-36. https://doi.10.1016/j.ecoenv.2018.12.058.
  24. Cushman, J.C. (2001). Osmoregulation in plants: implications for agriculture. American Zoologist, 41(4):758-769. https://doi.10.1093/Icb/41.4.758
  25. Duarte, B., Santos, D., Marques, J.C. and Caçador, I. (2013). Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback — Implications for resilience in climate change. Plant Physiology and Biochemistry, 67:178–188. https://doi.10.1016/j.plaphy.2013.03.004.
  26. El Ghazali, G.E.B., Al-Soqeer, A.A. and Abdalla, W.E. (2018). A study on the leaf surfaces micro-morphological characteristics in the Chenopodiaceae. International Journal of Sciences, 7(12): 56-61. https://doi.10-18483/ijSci.1874.
  27. El Ghazali, G.E.B., Al-Soqeer, A.A. and Abdalla, W.E. (2016). Epidermal micro-morphological study on stems of members of the family Chenopodiaceae. Applied Ecology and Environmental Research, 14(4): 623-633. https://doi.10.15666/aeer/1404-623633.
  28. El Ghazali, G.E.B., Al-Soqeer, A.A. and Abdalla, W.E. (2017). Effect of treated sewage effluents on plant cover and soil at Wadi Al Rummah, Qassim Region, Saudi Arabia. Soil and Water Research, 12(4):246-253. https://doi.10.17221/230/2016-SWR.
  29. El-Keblawy, A., Al-Shamsi, N. and Mosa, K. (2018). Effect of maternal habitat, temperature and light on germination and salt tolerance of Suaeda vermiculata, a habitat-indifferent halophyte of arid Arabian deserts. Seeds Science Research, 28:140-147. https://doi.org/10.1017/S09602518000144.
  30. Freitag, H., Hedge, I.C., Jafri, S.M.H., Kothe-Heinrich, G., Omer, S. and Uotile, P. (2001). Chenopodiaceae Ventenat. In: Flora of Pakistan, V. 204. https://www.efloras.org/ florataxon.aspx?flora_id=5&taxon_id=10185
  31. Gairola, S., Shabana, H.A., Mahmoud, T., El-Keblawy, A. and Santo, A. (2019). Evaluating germinability of eight desert halophytes under long-term seed storage: implications for conservation. Plant Diversity, 41(04):229-236. https://10.1016/j.pld.2019.07.002.
  32. Garcia-Caparros, P., Llanderal, A., Pestana, M., Correia, P.J. and Lao, M.T. (2016). Lavandula multifida response to salinity: Growth, nutrient uptake and physiological changes. Journal of Plant Nutrition and Soil Science, 180(1):96-104. https://doi.org/10.1002/jpln.201600062.
  33. Grigore, M.N. and Toma, C. (2017). Anatomical adaptations of halophytes - a review of classic literature and recent findings. Springer International Publishing AG. https://doi.10.1007/978-3-3319-66480-4_3.
  34. Guma, I.R., Padron-Mederos, M.A., Santos-Guerra, A. and Reyes-Guerra, J.A. (2010). Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of Arid Environments, 74(6):708-711. https://doi.org/10.1016/j.jaridenv.2009.10.001.
  35. Hammond-Kosack, K.E. and Jones, J.D.G. (2000). Response to plant pathogens. In: Buchannan, B., Gruissem, W. and Jones, R.L. (eds.). Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, 2000:1102-1157. https://wiley.com/en-gb.
  36. Hassiotou, F., Evans, J.R., Ludwig, M. and Veneklaas, E.J. (2009). Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant, Cell and Environment, 32:1596-1611. https://doi.10.1111/j.1365-3040.2009.02024.x.
  37. Hund, A., Ruta, N. and Liedgeus, M. (2009). Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil, 318(1-2):311-325. https://10.1007/s11104-008-9843-6.
  38. Jimenez, M.S., Zellnig, G., Stabentheiner, E., Peters, J., Morales, D. and Grill, D. (2000). Structure and ultrastructure of Pinus canariensis needles. Flora, 195(3): 228-235. https://doi.org/10.1016/S0367-2530(17)30975-1.
  39. Jongbloed, M.V.D., Western, A., Feulner, G.R. and Boer, B. (2003). The comprehensive guide to the wild flowers of the United Arab Emirates, Abu Dhabi, UAE. Environmental Research and Wildlife Development Agency. https://www.semanticscholar.org.
  40. Jordan, G.J., Weston, P.H., Carpenter, R.J., Dillon, R.A. and Brodribb, T.J. (2008). The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany, 95(5):521-530. https://doi.10.3732/ajb.2007333.
  41. Judd, W.S. and Ferguson, I.K. (1999). The genera of Chenopodiaceae in the Southeastern United States. Harvard Papers in Botany, 4(2):365-416. https://www.jstor.org/stable/41761579.
  42. Khan, M.A., Gul, B. and Weber, D.J. (2006). Effect of salinity on the growth and ion content of Salicornia rubra. Communications in Soil Science and Plant Analysis, 32(17-18):2965-2977. https://doi.org/10.1081/CSS-120000975
  43. Kim, Y.H. and Kim, K.H. (2007). Abscission layer formation as a resistance response of Peruvian apple Cactus against Glomeralla cingulata. Phytopathology, 92(9):964-969. https://doi.10.1094/PHYTO.2002.92.9.964.
  44. Koch, K. and Barthlott, W. (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A, 367: 1487-1509. https://doi.10.1039/B804854A.
  45. Krauss, K.W., Lovelock, C.E. and McKee, K.L. (2008). Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany, 89(2):105-127. https://doi.10.1016/I.aquabot.2007.12014.
  46. Lyshede, O.B. (1979). Xeromorphic features of three stem assimilant in relation to their ecology. Botanical Journal of the Linnaean Society, 78(2): 85-98. https://doi.org/10.1111/j.1095-8339.1979.tb02187.x.
  47. Males, J. (2017). Secrets of succulence. Journal of Experimental Botany, 68(9):2121-2134. https://doi.10.1093/jxb/erx096
  48. Mishra, E., Khare, S., Trivedi, P.K. and Nath, P. (2008). Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South African Journal of Botany, 74(2):282-287. https://www.sciencedirect.com/science/article/pii/s 0254629907004437
  49. Munns, R. (1992). A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Austrian Journal of Plant Physiology, 19:127–135. https://doi.org/10.1071/pp9920127.
  50. Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(2):651–681. https://doi.10.1146/annurev.arplant.59.032607.092911.
  51. Parida, A., Das, A.B. and Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 170(1):28–36. https://doi.10.1007/BF.03030429.
  52. Patharkar, O.R., Gassmann, W. and Walker, J.C. (2017). Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genetics, 13(12):e1007132. https://doi.org/10.137/journal.pgen.1007132.
  53. Patterson, S.E. and Bleecher, A.B. (2004). Ethylene-dependent and – independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology, 134(1):194-203. https://doi.org/10.1104/pp.103.028027.
  54. Pfundel, E.E., Agati, G. and Cerovic, Z.G. (2006). Optical properties of plant surfaces. In: Riederer, M. and Muller, C. (eds.). Biology of the cuticle. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9781119312994.apr0234.
  55. Phondani, P.C., Bhatt, A., Elsarrag, E. and Horr, Y.A. (2016). Ethnobotanical magnitude towards sustainable utilization of wild foliage in Arabian desert. Journal of Traditional and Complementary Medicine, 6(3):209- 218. https://doi.10.1016/j.jtcme.2015.03.003.
  56. Polechova, J. and Barton, N.H. (2015). Limits to adaptation along environmental gradients. Proceedings of the National Academy of Sciences (U.S.A.), 112(20):6401-6406. https://doi.10.1073/pnas.1421515112.
  57. Poss, J.A., Gratten, S.R., Grieve, C.M. and Shannon, M.C. (1999). Characterization of leaf boron injury in salt-stress Eucalyptus by image analysis. Plant and Soil, 206(2):237-245. https://doi.10.1023/A.1004488331737.
  58. Rasmuson, K.E. and Anderson, J.E. (2002). Salinity affects development, growth, and photosynthesis in cheatgrass. Journal of Range Management, 55(1):80-87. https://doi.10.2307/4003267.
  59. Riederer, M. (2006). Introduction: biology of the plant cuticle. In: Riederer, M. and Muller, C. (eds.), Biology of the plant cuticle. Blackwell Publishing, Oxford. https://doi.org/10.1002/9780470988718.ch1.
  60. Riederer, M. and Muller, C. (2006). Biology of the plant cuticle., Blackwell Publishing Ltd. https://doi.10.1002/9780470988718.fmatter.
  61. Rio-Garcia, T., Mediavilla, S., Silla, F. and Escudero, A. (2015). Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment. Forest Systems, 24(2):e027. https://dx.doi.org/10.5424/fs/2015242-07263.
  62. Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and regradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1):93-99. https://doi.10.1016/I.scienta.2004.04.009.
  63. Schutze, P., Freitag, H. and Weising, K. (2003). An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). Plant Systematics and Evolution, 239:257-286. https://doi.10.1007/s00606-003-0013-2.
  64. Sefidanzadeh, S., Ziarati, P. and Motamed, S.M. (2015). Chemical composition of Sueada vermiculata seeds grown in Hormozgan in the south of Iran. Biosciences Biotechnology Research Asia, 12(3):1923- 1929. http://dx.doi.org/10.13005/bbra/1858.
  65. Sharma, J., Upadhyay, A.K., Bande, D. and Patil, S.D. (2011). Susceptibility of Thompson seedless grapevines raised on different rootstocks to leaf blackening and necrosis under saline irrigation. Journal of Plant Nutrition, 34(11):1711-1722. https://doi.org/10.1080/01904167.2011.592566.
  66. Shiwachi, H., Okonkwo, C.C. and Asiedu, R. (2006). Nutrient deficiency symptoms in yams (Dioscorea spp.). Tropical Science, 44(4):155-162. https://doi.org/10.1002/ts.158.
  67. Slabu, C., Zorb, C., Steffens, D. and Schubert, S. (2009). Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl- toxicity? Journal of Plant Nutrition and Soil Science, 172: 644-650. https://doi.org/10.1002/jpln.20090052.
  68. Slama, I., Ghnaya, T., Savouré, A. and Abdelly, C. (2008). Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. Comptes Rendus Biologies, 331(6):442–451. https://doi.10.1016/j.crvi.2008.03.006.
  69. Smirnoff, N. (1996). Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of Botany, 78:661- 669. https://academic.oup.com>aob>article.
  70. Smith, S.D., Monson, R.K. and Anderson, J.E. (1997). CAM succulents. In: physiological ecology of North American desert plants. pp. 125-140. Springer-Verlag Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-59212-6_6.
  71. Sobrado, M.A. and Medina, E. (1980). General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of "bana" vegetation of amazonas. Oecologia, 45(3): 341-345. https://doi.10.1007/BH00540202.
  72. Stepiens, P. and Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology, 149(2):1154–1165. https://doi.10.1104/pp.108.132407.
  73. Taibi, K., Taibi, F., Abderrahim, L.A. and Ennajah, A. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. South African Journal of Botany, 105: 306-312. http://dx.doi.org/10.1016/j.sajb.2016.03.011.
  74. Vincent, S.J., Coutts, B.A. and Jones, A.C. (2014). Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface. PLOS ONE, 9(6): e101542. https://doi.org/10.1371/journal.pone.0091224.
  75. Wamishe, Y.A., Hardke, J., Mulaw, T., Gerbremariam, T., Belmar, S., Kelsey, C., Roberts, T. and Fryer, J. (2018). A method to estimate field response to hydrogen sulfide toxicity and autumn decline in rice cultivars. Journal of Soil Science and Plant Health, 2(2):1-5. https://pdfs.semanticscholar.org.
  76. Wang, W.X., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1): 1-14. https://doi.10.1007/s00425-003-1105-5
  77. Welsh, S.L., Crompton, C.W. and Clements, S.E. (2003). Chenopodiaceae Ventenat. In: Editorial committee (ed.), Flora of North America, 4:258, 268, 302. https://www.eflora.org/florataxon.aspx.
  78. Wicks, T., Walker, G., Pederick, S. and Anstis, S. (2010). Onion stunting in South Australia associated with Rhizoctonia solani AG8. Australian Plant Pathology, 40(2):126-132. https://doi.10.1007/s13313-010-0021-y.
  79. Woo, H.R., Masclaux-Daubresse, C. and Lim, P.O. (2018). Plant senescence: how plants know when and how to die. Journal of Experimental Botany, 69(4):715-718. https://doi.10.1093/jxb/ery011.
  80. Zeng, F., Yan, H. and Arndt, S.K. (2009). Leaf and whole tree adaptations to mild salinity in field grown Populus euphratica. Tree Physiology, 29(10):1237-1246. https://doi.10.1093/treephys/tpp055.
  81. Zhu, G., Mosyakin, S.I. and Clements, S.E. (2003). Chenopodiaceae. In: Zhengyi, W. and Raven, P.H. (eds.), Flora of China, 5:351-414. Missouri Botanical Garden Press. https://www.eFlora.or/florataxon.

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue May 2020

Volume 9, May 2020


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper