Kinetics and Thermodynamics of Thermal Inactivation of Cellulase from Salivary Glands of Macrotermes subhyalinus Little Soldier

Kinetics and Thermodynamics of Thermal Inactivation of Cellulase from Salivary Glands of Macrotermes subhyalinus Little Soldier

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Fagbohoun Jean Bedel, Yapi Jocelyn Constant, Deffan Zranseu Bénédicte

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2294 23 124 13-20 Volume 9 - Apr 2020

Abstract

For optimization of biochemical processes in food and pharmaceutical industries, the evaluation of enzyme inactivation kinetic models is necessary to allow their adequate use. kinetics and thermodynamic analysis of cellulase (GS-CX) from salivary glands of Macrotermes subhyalinus little soldier were studied, using carboxymethylcellulose as a substrate. Optimal conditions for enzymatic studies were determined to be pH 5.0 and 60 °C. Thermal inactivation of GS-CX was examined in more detail between 50 and 65 °C and in relation to exposure time. The investigation suggests the existence of a non-sensitive heat fraction on the enzyme structure, which is relatively stable up to temperatures close to 55 ºC. Denaturation of this enzyme, measured by loss in activity, could be described as a first-order model, with k-values between 0.0052 and 0.0337 min-1. D- and k-values decreased and increased, respectively, with increasing temperature, indicating faster cellulase (GS-CX) inactivation at higher temperatures. Results suggested that GS-CX is a relatively thermostable enzyme with a Z-value of 18.08 °C and Ea of 115.81 kJmol-1. The results of the thermodynamic investigations indicated that the hydrolytic reactions were: (1) not spontaneous (∆G > 0) and (2) slightly endothermic (∆H > 0). Positive values of entropy (ΔS > 0) for GS-CX indicated that this enzyme is found in a chaotic state at the end of the reaction. The high value obtained for the variation in enthalpy indicated that a high amount of energy was required to initiate denaturation, probably due to the molecular conformation of this enzymes. Results shown that the enzyme is quite stable for biotechnological applications.

Keywords

Carboxymethylcellulose, Kinetics And Thermodynamic Parameters, Macrotermes Subhyalinus, Thermal Stability, Salivary Glands, Cellulase

References

  1. Abdul S., J., T. 2015. Investigation in kinetic-thermodynamic parameters of free cellulase produced by local fungi trichoderma viride. World Journal of Pharmacy and Pharceutical Sciences, 4(2), 1-6
  2. Awuah, G. B., Ramaswamy, H. S. Economides, A. 2007. Thermal processing and quality: Principles and overview. Chem. Eng. Proc., 46, 584-602. DOI: 10.1016/j.cep.2006.08.004
  3. Barrett, N. E., Grandison, A. S., & Lewis, M. J. (1999). Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. Journal of Dairy Research, 66(1), 73-80. DOI:10.1017/s0022029998003252
  4. Björck L (1992). Indigenous enzyme sinmilk. Lactoperoxidase.In:FoxF,editor. Advanceddairychemistry. 1.Proteins. London: Elsevier. p. 323-38.
  5. Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol., 39, 453-487. Doi.org/10.1146/annurev.en.39.010194.002321
  6. Bromberg, A.; Marx, S.; Frishman, G. 2008. Kinetic study of the thermal inactivation of cholinesterase enzymes immobilized in solid matrices. Biochim. Biophys, 1784, 961-966. DOI:10.1016/j.bbapap.2008.02.018
  7. Brune, A., & Stingl, U. (2005). Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In Molecular basis of symbiosis (pp. 39-60). Springer Berlin Heidelberg.
  8. Chakraborty, N., Sarkar, G. M., & Lahiri, S. C. (2000). Cellulose degrading capabilities of cellulolytic bacteria isolated from the intestinal fluids of the silver cricket. Environmentalist, 20(1), 9-11.
  9. Chutintrasri B, Noomhorm A (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. Lebensmittel-Wissenschaft, 39: 492 – 495. DOI: 10.1016/j.lwt.2005.04.006
  10. Clarke A.J. (1997). Biodegradation of Cellulose: Enzymology and Biotechnology. Technomic Pub. Co., Lancaster, PA. pp. 3–68.
  11. D'Amico, S., Marx, J.-C., Gerday, C., & Feller, G. (2003). Activity-stability relationships in extremophilic enzymes. Journal of Biological Chemistry, 278(10), 7891-7896. DOI:10.1074/jbc.M212508200
  12. Dogan M, Alkan M, Onganer Y (2000). Adsorption of methlene blue from aqueous solution onto perlite. Water, Air and Soil Pollution, 120: 229-248.
  13. Dogan M, Arslan O, Dogan S (2002). Substrate specificity, heat inactivation and inhibition of polyphenol oxidase from different aubergine cultivars. Int. J. Food Sci. Technol., 37: 415-423. Doi.org/10.1046/j.1365-2621.2002.00580.x
  14. Dogan N. and Tari C. 2008. “Characterization of three-phase par- titioned exo-polygalacturonase from Aspergillus sojae with unique properties,” Biochemical Engineering Journal, 39(1): 43–50. DOI: 10.1016/j.bej.2007.08.008
  15. Elba P.S., Maria A.F. (2007). Bioethanol production via enzymatic hydrolysis of cellulosic biomass. Published in ‘The role of agricultural biotechnologies for production of bioenergy in developing countries an FAO seminar held in Rome. Available: http:// www.fao.org/biotech/seminaroct 2007.htm.
  16. Espachs-Barroso, A., Van Loey, A., Hendrickx, M., & Martín-Belloso, O. (2006). Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science & Emerging Technologies, 7(1), 40-48. Doi.org/10.1016/j.ifset.2005.07.002
  17. Fagbohoun, J. B., Ahi, A. P., Karamoko, Y., Dabonné, S., Kouadio, E. J. P., & Kouamé, L. P. (2012). An endo-beta-D-glycosidase from salivary glands of Macrotermes subhyalinus little soldier with a dual activity against carboxymethylcellulose and xylan. International Journal of Biosciences, 2, 1-10.
  18. Galani D, Owusu ARK (1997). The comparative heat stability of bovine ß-lactoglobulin in buffer and complex media. J. of Sci. and Food Agric., 74: 89-98.
  19. Giannakopoulou A., Patila M., Spyrou K., Chalmpes N., Zarafeta D., Skretas G., Gournis D. and Stamatis H. (2019). Development of a Four-Enzyme Magnetic Nanobiocatalyst for Multi-Step Cascade Reactions. Catalysts, 995, 1-22. doi:10.3390/catal9120995
  20. Gnangui SN, Niamke SL, Kouame LP (2009). Some characteristics of polyphenoloxidase purified from edible yam (Dioscorea cayenensisrotundata cv. Longbô) cultivated in Côte d’Ivoire. J. of Food Sci. and Technol., 44: 2005-2012.
  21. Guiavarc'h, Y. P., Deli, V., Van Loey, A. M., & Hendrickx, M. E. (2002). Development of an enzymic time temperature integrator for sterilization processes based on Bacillus licheniformis α-amylase at reduced water content. Journal of Food Science, 67(1), 285-291. doi.org/10.1111/j.1365-2621.2002.tb11399.x
  22. Haloi D. J, Borkotoki A, Mahanta R, Haloi I. H. 2012. Cellulase Activity and Kinetics in Rice Grasshopper Hieroglyphus banian (Orthoptera: acrididae). Indian Journal of Science an Technology, 5(12): 3753-3757.
  23. Hill J., Nelson E., Tilman D., Polasky S. and Tiffany D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 314:1598-1600. DOI:10.1073/pnas.0604600103
  24. Hong, Y., Dashtban, M., Chen, S., Song, R., & Qin, W. (2012). Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. International Journal of Biology, 4, 172-180. DOI:10.5539/ijb.v4n1p172
  25. Inoue, T., Murashima, K., Azuma, J. L., Sugimoto, A., & Slaytor, M. (1997). Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J. Insect Physiol., 43, 235-242. DOI:10.1016/s0022-1910(96)00097-2
  26. Kouamé L. P., Kouamé A. F., Niamké S. L., Faulet M. B. & Kamenan A. (2005). Biochemical and catalytic properties of two β-glycosidases purified from workers of the termite Macrotermes subhyalinus (Isoptera: Termitidae). International Journal Tropical Insect Sciences. 25: 103-113. DOI: https://doi.org/10.1079/IJT2006106
  27. Longo, M. A.; Combes, D. 1999. Thermostability of modified enzymes -a detailed study. J. Chem. Technol. Biotechnol, 74,25-32.
  28. Lowry OH., Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the folin phenol reagent. J. of Biol. and Chem., 193: 265-275.
  29. Lu, W. J., Wang, H. T., & Nie, Y. F. (2004). Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. Journal of Environmental Science and Health, Part B, 39(5-6), 871–887.
  30. Lynd L.R., Van Zyl W.H., McBride J.E., Laser M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 16(5):577-583. DOI:10.1016/j.copbio.2005.08.009
  31. Marín, E., Sánchez, L., Pérez, M. D., Puyol, P., and Calvo, M. (2003). Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. Journal of Food Science, 68(1), 89-93.
  32. Doi.org/10.1111/j.1365-2621.2003.tb14120.x
  33. Martin N. 2010. Purificaçao e Caracterizaçao da Poligalacturonase Termoestavel Produzida pela Linhagem Fungica Thermomucor Indicae-Seudaticae N31 em Fermentaçao em Estado Solido e Submersa, UNESP, Rio Claro, Brazil.
  34. Matsumoto, M., Kida, K., & Kondo, K. (1997). Effects of polyols and organic solvents on thermostability of lipase. Journal of Chemical Technology & Biotechnology, 70(2), 188-192.https://doi.org/10.1002/(SICI)1097-4660(199710)70:2<188::AID JCTB745>3.0.CO;2-X
  35. Mswaka, A. Y., and Magan, N. (1998). Wood degradation, and cellulase and ligninase production, by Trametes and other wood-inhabiting basidiomycetes from indigenous forests of Zimbabwe. Mycological Study, 102(11), 1399–1404. DOI: https://doi.org/10.1017/S0953756298006789
  36. Nutt, A., Sild, V., Prtterson, G., and Johansson, G. (1998). Progress curve as a means for functional classification of cellulases, Europian Journal of Biochemistry, 258, 200.
  37. Rouland, C., Civas, A., Renox, J., and Petek, F. (1988). Purification and Properties of Cellulases from the termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol., 91B(3), 449-458.
  38. Saqib A. A. N., Hassan M., Khan N. F. and Baig S. 2010. “Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF),” Process Biochemistry, 45(5): 641– 646. DOI: 10.1016/j.procbio.2009.12.011
  39. Slaytor, M. (2000). Energy metabolism in the termite and its gut microbiota. In Termites: Evolution, Sociality, Symbioses, Ecology (pp. 307-332). Springer Netherlands.
  40. Slaytor, M. (1992). Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem. Physiol. B., 103, 775–784. https://doi.org/10.1016/0305-0491(92)90194-V
  41. Sousa, R. (1995). Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization. Acta Crystallographica Section D, 51, 271-277. https://doi.org/10.1107/S0907444994014009
  42. Stumbo, C. R. (1973). Thermobacteriology in food processing (2nd ed., p. 336). New York, NY: Academic Press. Tayefi-Nasrabadi, H., & Asadpour, R. (2008). Effect of heat treatment on buffalo (Bubalus bubalis) lactoperoxidase activity in raw milk. Journal of Biology Science, 8(8), 1310-1315.
  43. Tabatabai M.A. (1982). Soil enzymes.In: Page, AL, Miller RH, Keeney DR. (Eds.), Methods of Soil Analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of AgronomySoil Science Society of America, Madison, WI, pp. 903–947.
  44. Trindade L.V., Desagiacomo C., Polizeli M. de L. T. de M., André Ricardo de Lima Damasio A.R de L., Lima A.M.F., Gomes E. and Bonilla-Rodriguez G.O. 2016. Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation. BioMed Research International, ID 8653583, 10 pages Doi.org/10.1155/2016/8653583
  45. Vaithanomsat, P., Chuichulcherm, S., and Apiwatanapiwat, W. (2009). Bioethanol production from enzymatically saccharified sunflower stalks using steam explosion as pretreatment, Proceedings of World Academy of Science, Engineering and Technology, 37, 140-143. doi=10.1.1.193.1882&rep=rep1&type=pdf
  46. Waliszewski, K. N.; M´rquez, O.; Pardio, V. T. 2009. Quantification and characterisation of polyphenol oxidase from vanilla bean. Food Chem. 2009, 117, 196-203.
  47. Zhou H, Feng X. (1991). Polyphenol oxidase from Yali pear (Pyrusbretschneideri). J. of the Sci. of Food and Agric., 57: 307–313. https://doi.org/10.1002/jsfa.2740570302

Cite this Article:

  • BibTex
  • RIS
  • APA
  • Harvard
  • IEEE
  • MLA
  • Vancouver
  • Chicago

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue July 2020

Volume 9, July 2020


Table of Contents


Order Print Copy

World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper