Nutrient, Antinutrient and Sugar Contents in Desert Date (Balanites aegyptiaca (L.) Del) Seed and Pulp

Nutrient, Antinutrient and Sugar Contents in Desert Date (Balanites aegyptiaca (L.) Del) Seed and Pulp

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): M. O. Aremu, Crysanthus Andrew, Odiba John Oko, Raphael Odoh, Idzi Amos Ambo, Baba Nwuniji Hikon

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2484 32 73 12-21 Volume 10 - Jul 2021

Abstract

This study focuses on the nutrient, antinutrient and sugar contents of (desert date) Balanites aegyptiaca seed and pulp collected from north–east Nigeria. Proximate, mineral, amino acid, antinutrient and sugar compositions were determined using standard analytical techniques. The calculated parameters were metabolized energy, mineral safety index (MSI), mineral ratios of some minerals, isoelectric point (pI), predicted protein efficiency ratio (P–PER) and leucine to isoleucine ratio. The results showed that seed was very rich in crude protein and crude fat with values of 30.80 and 45.53 g/100 g dry weight basis, respectively whereas, the pulp had values of 8.36 and 5.10 g/100 g dw for the same parameters. The following were observed as the most concentrated minerals: P (312.72 and 138.62 mg/100 g dw), Na (58.49 and 47.65 mg/100 g dw) and Ca (48.57 and 40.26 mg/100 g dw) for seed and pulp, respectively. Other minerals analyzed in the samples had values less than 15.0 mg/100 g. No mineral had deleterious value in the MSI. Amino acid analysis of seed and pulp showed concentrations of TAA (63.21 and 42.62 g/100 g cude protein), TEAA (26.19 and 21.88 g/100 g cp) and TNEAA ((26.19 and 21.88 g/100 g cp). Leucine (7.30 g/100 g cp) and Arg (3.69 g/100 g cp) were the most concentrated essential amino acids in seed and pulp. The phytate, tannin and oxalate concentrations were higher in seed compared with that of the pulp. All the sugars were of low levels. Generally, Balanites aegyptiaca seed and pulp contained nutritive minerals and sufficient proportions of EAAs however, dietary formula based on samples of the seed and pulp will require EAAs supplementation except in Leu, TSAA and Phe + Tyr of the seed. Likewise, the high contents of some of the antinutrients may pose a nutritional problem in their consumption.

Keywords

Balanites aegyptiaca, Seed, Pulp, Proximate, Minerals, Amino Acids, Antinutrients, Sugars

References

  1. Manji, A. J., Sarah E. E., Modibbo, U. U. (2013). Studies on the potentials of Balanites aegyptiaca seed oil as raw material for the production of liquid cleansing agents. Inter. J. Phys. Sci. 8: 1655-1660.
  2. Tesfaye A. (2015). Balanites (Balanite aegyptiaca) Del., Multipurpose Tree a Prospective
  3. Review, Inter. J. of Modern Chem. & Applied Sci. 2: 189-194.
  4. National Research Council (2008). Lost crops of Africa: Volume III: Fruits. Development,
  5. Security, and Cooperation Policy & Global Affairs. National Academies Press, Washington, DC, USA. 380 pp.
  6. Fregon, S. M. E. & Shakak, M. A. S. (2016). Physicochemical properties of Balanites aegyptiaca (Laloub) seed oil. J. Bio. Sci. 2: 10-19.
  7. Elfeel, A. A. & Warrag, E. I. (2011). Uses and conservation status of Balanites aegyptiaca (L.) Del. (Hegleig Tree) in Sudan: Local people perspective. Asian J. Agric. Sciences 3: 386–390.
  8. Sadiq, I. S., Dangoggo, S. M., Hassan, L. G., Manga, S. B., Thompson, I., Itodo, A. U. (2012). Nutritional composition of aduwa fruit (Balanites aegytiaca) from semi-arid region, north-western Nigeria. Inter. J. Food and Nutri. Sci. 1:7-9.
  9. Sagna, M. B., Diallo, A, Sarr, P. S., Ndiaye, O., Goffner, D., Guisse, A. (2014). Biochemical
  10. composition and nutritional value of Balanites aegyptiaca (L.) Del fruit pulps from Northern Ferlo in Senegal. Afri. J. Biotechn. 13: 336-342.
  11. Feyssa, D. H., Njoka, T. J., Asfaw, Z. & Nyangito, M. M. (2015). Nutritional contents of Balanites aegyptiaca and its contribution to human diet. African Journal of Food Science, 9: 346-350.
  12. AOAC. Association of Official Analytical Chemists (2005). Official Method of Analysis 16th Edn. Washington DC.
  13. Paul, A. & Southgate, D. (1978). The Composition of Foods. 4th Edn. Eleservier, North.
  14. Olaofe, O. & Akintayo, E. T. (2000). Prediction of isoelectric points of legume and oil seed proteins from amino acid composition. J. Technoscience, 4, 49-53.
  15. FAO/WHO (1991). Protein Quality Evaluation Report of Joint FAO/WHO Expert Consultative FAO Food and Nutrient.FAO, Rome, Italy.
  16. Alsmeyer, R. H., Cunningham, A. E. & Happich, M. L. (1974). Equation to predict (PER) from amino acid analysis. Food Technology, 28: 34 – 38.
  17. Olonisakin, A., Aremu, M. O. & Omonigbehin, E. A. (2004). Phytochemical and antimicrobial investigations of extractive from Phyllantus amarus. Biosci. Biotech. Research, Asia, 2(1): 33 – 36.
  18. Usoro, E. U., Suyamsothy, E. & Sanni, G. A. (1982). Manual of Chemical Methods of Food Analysis. Bencox International Ltd, Lagos.
  19. Vidivel, V. & Janardhanen K. (2001). Nutritional and anti–nutritional attributes of underutilized legume, Cassinfloribundacar, Food Chemistry, 73, 209–215.
  20. Audu, S. S. & Aremu, M. O. (2011). Effects of processing on chemical composition of red kidney bean (Phaseolus Vulgaries L.) flour. Pak. J. Nutri., 10(11), 1069 – 1075.
  21. Aremu, M. O., Atolaiye, B. O., Pennap, G. R. I., & Ashikaa, B. T. (2007). Proximate and amino acid composition of mequite bean (Prosopis africana) protein concentrate. Indian J. Botanical Res., 3(1), 97–102.
  22. Aremu, M. O., Opaluwa, O. D., Bamidele, T. O., Nweze, C. C., Ohale, I. M. & Ochege, M. O. (2014). Comparative evaluation of nutritive value of okro (Abelmoschus esculentus and Mango (Irvingia gabonensis) fruits grown in Nasarawa State, Nigeria, Food Sci. and Quality Mgt., 27, 63–70.
  23. Aremu, M. O., Olaofe, O., Basu, S. K., Abdulazeez, G. & Acharya, S. N. (2010). Processed cranberry bean (Phaseolus coccineus) seed flours for African diet. Canadian J. Plant Science, 90, 719 – 728 (DOI: 10.4141/CJPS09149.
  24. Al–Wander, H. (1983). Chemical composition of seeds of two okro cultivated. J. Agric. & Food Chem., 31, 1353–1358.
  25. Omofuvbe, B. O., Falade, O. S., Osuntogun, B. A. & Adewusi, S. R. A. (2004). Chemical and biochemical changes in African locust bean (Parkia biglobosa) and melon (Citrullus vulgaris) seeds during fermentation to condiments. Pak. J. Nutri., 3(3), 140–145.
  26. Onyeike, E. N. & Acheru, G. N. (2002). Chemical composition of selected Nigerian oil seeds and physicochemical properties of the oil extracts, Food Chem., 77, 431–437..
  27. Khalil, I. A. & Khan, S. (1995). Protein quality of Asian beans and their wild progenitor, Vigna sublobata (Roxb), Food Chem., 52, 327–330.
  28. Audu, S. S., Aremu, M. O. & Lajide, L. (2013). Influence of traditional processing methods on the nutritional composition of black turtle bean (Phaseolus vulgaris L.) grown in Nigeria, Int. Food Res. J., 20(6), 3211–3220.
  29. Olaofe, O., Famurewa, J. A. & Ekuagbere, A.O. (2010). Chemical and functional properties of kidney bean seed (Phaseolus vulgaris L.) flour. Int. J. Chem. Sci., 3(1), 51–69.
  30. Audu, S. S. & Aremu, M. O. (2011). Effect of processing on chemical composition of red kidney bean (Phaseolus vulagaris L.) flour. Pak. J. Nutri., 10(11): 1069 – 1075. DOI: 10.3923/pjn.2011.1069.1075.
  31. Ene-Obong, H. N. (1992). Nutritional evaluation, composition pattern and processing of underutilized traditional foods particular reference to the African yambeans (Sphenostylis stenocarpa). PhD thesis, Department of Home Science and Nutrition, University of Nigeria, Nsukka.
  32. Effiong, G. S., Ibia, T. O. & Udofia, U. S. (2009). Nutritive and energy values of some wild fruit spices in South -Eastern Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8(10): 917 – 923.
  33. Aremu, M. O., Ibrahim, H., Bamidele, T .O., Salau, R. B., Musa, B. Z. & Faleye, F. J. (2018). Nutrient and antinutrient composition of shea (Vitellaria paradoxa C. F. Gaertn) kernel and pulp in the north–east Nigeria, Int. J. Sci., 7, 56–66.
  34. Pamela, C. C., Richard, A. H. & Denise, R. F. (2005). Lippincotts illustrated Reviews Biochemistry 3rd ed., Lippincott Williams and Wilkins, Philadelphia, pp. 335 – 388.
  35. Elias, L. G., Cristales, F. R., Bressani, R. & Miranda, H. (1976). Chemical composition and nutritive value of some grain legumes nutrient, Abstract Revised (Series B/1977), 47, 603–864.
  36. Maranz, S. & Wiesman, Z. (2004). Influence of climate on the tocopherol content of shea butter. J. Agric. Food Chem. 52, 2934–2937.
  37. Olaofe, O., Aremu, M. O. & Okiribiti, B.Y. (2008). Chemical evaluation of the nutritive value of smooth luffa (Luffa cylindrica) seed’s kernel. Electronic Journal of Environmental and Agricultural Food Chemistry, 7(10), 3444 – 3452.
  38. Aremu, M. O., Bamidele, T. O., Nweze, C. C. & Idris, I. M. (2012). Chemical evaluation of pride of barbados (Caesalpinia pulcherrima) seeds grown in Gudi, Nasarawa State, Nigeria. Int. J. Chem. Sci., 5(1): 29 – 34.
  39. Oshodi, A. A. & Ekperigin, M. M. (1989). Functional properties of pigeon pea (Cajanus cajan) flour, Food Chem., 34, 187–191.
  40. Siddhuraju, P., Vijayakumari, K. & Janardhanan, K. (1996). Chemical composition and protein quality of the little–known legume, velvet bean (Mucuna pruriens L.). J. Agric Food Chem., 44, 2636–2641.
  41. Audu, S. S. & Aremu, M . O. (2011). Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria, J. Food, Agric. & Environ., 9(3&4), 72–80.
  42. Aremu, M. O., Olaofe, O. & Akintayo, E. T. (2006). Compositional evaluation of cowpea (Vigna unguiculata) varieties and scarlet runner bean (Phaseolus coccineus) varieties flour, J. Food, Agric. & Environ., 4(2), 39–43.
  43. Ogunlade, I., Olaofe, O. & Fadare, T. (2005). Chemical composition, amino acid and functional properties of Leucaena leucocepha seeds flour. Nigeria J. Appl. Sci., 21, 7–12.
  44. Nieman, D. C., Butterworth, D. E. & Nieman, C. N. (1992). Nutrition. Wm. C. Brown Publishers, Dubuque, I. A. 540p.
  45. Shills, M. Y. G. & Young, U. R. (1992). Modern nutrition in health and disease. In: Nieman, D.C., Butterworth, D.E. and Nieman, C.N. (eds.). Nutrition. WmC, Brown Publishers, Dubuque, I.A., pp. 276–282.
  46. Aremu, M. O., Olaofe, O. & Akintayo, E. T. (2006). Chemical composition and physicochemical characteristics of two varieties of bambara groundnut (Vigna subterrenea) flours. J. Applied Sciences, 6(9): 1900 – 1903.
  47. Hathcock, J. N. (1985). Quantitative evaluation of vitamin safety, Pharmacy Times, pp. 104–113.
  48. Adeyeye, E. I. & Aremu, M. O. (2017). Chemical composition of the raw fruit coat, seed and pulp of passion fruit (Passiflora edulis), FUW Trends in Sci. & Tech. J., 2(1B), 334–341.
  49. Bonger, R. H., Bode-Boger, S. M., Mugge, A., Klenke, S., Brandes, R., Dwenger, A., Frollich, J. C. (1996). Supplementation of hypercholesterolemic rabbits with L-Arg reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis, 117: 273 – 284.
  50. Adeyeye, E. I. & Aremu, M. O. (2016). Chemical composition of whole shrimp, flesh and shell of Pandalas borealis) from Lagos atlantic ocean. FUW Trends in Science and Technology Journal, 1(1), 26–32.
  51. Aremu, M. O., Passali, D. P., Ibrahim, H. & Akinyeye, R. O. (2018). Chemical composition of wonderful kola (Bucchlozia coriacea) and breadfruit (Artocarpus altilis) seeds grown in South–South, Nigeria. Bangladesh J. Sci. and Ind. Res., 53(1), 125–132. DOI: 10.3329/bjsir.v53i2.36673
  52. Olubunmi, A. O., Olaofe, O. & Akinyeye, R. O. (2015). Amino acid composition of ten commonly eaten indigenous leafy vegetables of south-west Nigeria. World Journal of Nutrition and Health, 3(1), 16 – 21.
  53. FAO/WHO/UNU (1985). Energy and Protein Requirements; Report of a Joint FAO/WHO/UNU Expert Consultation, WHO Tech Rep Ser no. 724. Geneva: WHO.
  54. Arowora, K. A., Ezeonu, C. S., Imo C. & Nkaa C. G. (2017). Protein levels and amino acids composition in some leaf vegetables sold at Wukari in Taraba State, Nigeria. International Journal of Biological Sciences and Applications, 4(2): 19 – 24.
  55. FAO/WHO (1991). Protein quality evaluation report of joint FAO/WHO expert consultative FAO, Food and Nutrient.
  56. Ibrahim, H., Aremu, M. O., Onwuka, J. C., Atolaiye, B. O. & Muhammad, J. (2016). Amino acid composition of pulp and seed of baobab (Adansonia digitata L.). FUW Trends in Science & Technology Journal, 1(1): 74 – 79.
  57. Salunkhe, D. K., Kadam, S. S. & Chavan, J. K. (1985). CRC Postharvest Biotechnology of Food legumes. Boca Raton, FL: CRC Press.
  58. Belvady, B. & Gopalem, C. (1969). The role of leucine in the pathogenesis of canine black tongue and pellagra. Lancet, 2: 956 – 957.
  59. Ghafoornissa, S. & Narasinga, B. S. (1973). Effect of leucine on enzymes of the tryptophan niacin metabolic pathway in rat liver and kidney. Biochemistry Journal, 134, 425 – 430.
  60. Robinson, D. E. (1987). Food Biochemistry and Nutritional Value. Longman Scientific and Technology, Burnmell, Haslow, England, pp. 327 – 328.
  61. Belschant, A. A., Lyon, C. K. & Kohler, G. O. (1975). Sunflower, safflower, sesame and castor proteins. In: Food Protein Sources. Pirie (ed.), University Press Cambridge, UK. Pp. 79–104.
  62. FAO (1970). List of Foods Used in Agriculture, Nutritional Information Document Series Number 2, Food and Agriculture Organization of the United Nations, Rome, Italy, p. 45.
  63. Audu, S. S., Aremu, M. O. & Lajide, L. (2013). Effects of processing on physicochemical and antinutritional properties of black turtle bean (Phaseolus vulgaris L.) seeds flour. Oriental J. Chem., 29(3): 979 – 989.
  64. Oke, O. L. (1969). Oxalic acid in plants and nutrition, World Rev. Nutr. Dietetics, 10, 262–302.
  65. Adesina, A. J. & Adeyeye, E. I. (2012). The proximate and mineral composition of fatted and defatted marble vine seeds. Proceedings of the 36th Annual Conference of NIFST, 15–19 October, EKO 2012, 225–226.
  66. Coe, F.L., Evan, A. and Worcester, E. Kidney stone disease. (2005). J. Clin. Invest, 115(10): 2598 – 2608.
  67. Aremu, M. O.,Ibrahim, H. & Ekanem, B. E. (2016). Effect of processing on in–vitro protein digestibility and anti–nutritional properties of three underutilized legumes grown in Nigeria. British Biotechnology Journal, 14(1), 1 – 10.
  68. Banno, N., Akihisa, T., Tokuda, H., Yasukawa, K., Higashihara, H., Ukiya, M., Watanabe, K., Kimura, Y. Hasegawa, J. and Nishino, H. (2004). Triterpene acids from the leaves of Perilla frutescenes and their anti-inflammatory and antitumour-promoting effects. Bioscience Biotechnology and Biochemistry, 68, 85 – 90.
  69. Ijeomah, A. U., Ugwuona, F. U. & Ibrahim, Y. (2012). Nutrient composition of three commonly consumed indigenous vegetables of north-central Nigeria. Nigerian Journal of Agriculture, Food and Environment, 8(1): 17 – 21.
  70. Priya, K. D., Pachiappan, C., Sylvia, J. & Aruna, R. M. (2011). Study of the effects of hydrogen cyanide exposure in cassava workers. Indian J. Occup. Environ. Med., 15(3): 133 – 136.
  71. Bolanle, A. O. & Adedayo, A. (2012). Comparative study on chemical compositions, phytochemical screening and physico-chemical properties of the seeds of Dioclea reflexa. Ultra Chem., 8: 251 – 264.
  72. Robinson, T. (1985). The organic constituents of higher plants, their chemistry and inter–relationship, 3rd edn. Corcleus Press North Amlerst Mass, 6, 430–435.
  73. Oyelaran, O., McShane, L. M., Dodd, L., Gildersleeve, J. C. (2009). Profiling human serum antibodies with a carbohydrate antigen microarray, J. Proteome. Res., 8(9), 4301–4308.
  74. ChaHopadhyay, S., Raychaudhuri, U. & Chakraborty, R. (2014). Artificial sweetners – a review, J. Food Sci. Technol., 51(4), 611–621.
  75. Krog–Mikkelsen, I., Hels, O., Tetens, I., Holst, J. J., Anderson, J. R. & Bukhave, K. (2011). The effects of L–arabinose on intestinal sucrose activity: dose–response studies in vitro and in humans, The American J. Clinical Nutr., 94(2), 472–478.
  76. Adeyeye, E. I., Olaleye, A. A., Aremu, M. O., Atere, J. O. & Idowu, O. T. (2020). Sugar, antinutrient, and food properties levels in raw, fermented and germinated pearl millet grains, FUW Trends in Sci. Technol. J., 5(3), 745–758.
  77. Kareem, M. (2021). Fructose sugar: A major driver of obesity, diabetes and hypertension, Premium Times, Nigeria, Published in June 7, 2021.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue August 2021

Volume 10, August 2021


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper