Author(s)
Author(s): Georges Yannick Fangue-Yapseu, Romaric Armel Mouafo-Tchinda, Sévérin Donald Kamdem, michael Fomekong Kenne, Pierre Effa Onomo, Pierre-François Djocgoué
Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.2533
~ 37
` 95
a 14-20
Volume 10 - Dec 2021
Abstract
This study aimed to determine the effect of 10 and 15% concentrations of Azadirachta indica oil (v/v) and Tithonia diversifolia and Thevetia peruviana liquid manure (w/v) on some key characteristics of tomato fruits. For this purpose, the extracts were sprayed on the tomato plants every two weeks until the fruits were harvested. The results show that the 15% T. diversifolia mash had the most significant positive impact (p < 0.05) on the size, weight, and ability of tomato fruits to protect DNA from denaturation. Indeed, compared to fruits harvested from untreated plants, this treatment increased the surface area by 75.38%, the weight by 72.74%, and the protective capacity of fruits against hydrogen peroxide-induced DNA denaturation by 82.96%. On the other hand, the highest lycopene content was obtained with A. indica at 10% (139.13 ± 4.35 μg/g MF), and that of phenols was observed with T. peruviana at 10% (31.07 ± 1.06 mg eq catechin/g MF). Also, there is a positive and significant correlation (p < 0.05) between phenol content and DPPH (2.2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) free radical scavenging activities of tomato fruits. Thus, this study shows that wild plant extracts are able to improve fruit quality.
Keywords
Wild plant extract, Tomato, Lycopene, Phenols, Antiradical activity, DNA
References
- FAO. Étude diagnostiques de la réduction des pertes après récolte de trois cultures (manioc, tomate et pomme de terre). Rapport de synthèse: Cameroun. Rome (2018); 108.
- Galani JH, Houbraken M, Wumbei A, Djeugap J, Fotio D, Spanoghe P. Evaluation of 99 pesticides residues in major agricultural product from western highlands zone of Cameroon using QuEChERS method extraction and LC-MS/MS and GC-ECD analyses. Foods (2018); 7(11). https://doi.org/10.3390/foods7110184.
- Fangue-Yapseu GY, Mouafo-Tchinda RA, Fomekong KM, Effa OP, Djocgoue PF. Allelopathic effect of three wild plants (Azadirachta indica, Tithonia diversifolia and Thevetia peruviana) on tomato (Lycopersicum esculentum Mill.) growth and stimulation of metabolites involved in plant resistance. American Journal of Plants Sciences (2021); 12: 285-299. https://doi.org/10.4236/ajps.2021.123018.
- Marti C, Roselló S, Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers (2016); 8: 58.
- Martinez PJ, Fuentes R, Farias K, Lizana C, Alfaro FJ, Fuentes L, Calabrese N, Bigot S, Quinet M, Lutts S. Effects of salt stress on fruit antioxidant capacity of wild (Solanum chilense) and domesticated (Solanum lycopersicum var. cerasiforme) tomatoes. Agronomy (2020); 10: 1-17. www.mdpi.com/journal/agronomy.
- Fanciullino AL, Gautier H. Enrichissement des fruits charnus en caroténoïdes: exemple de la tomate et des agrumes. Innovations agronomiques (2014); 42: 77-89.
- Renard CM, Caris-Veyrat C, Dufour C, Le Bourvellec C. Le devenir des polyphénols et caroténoïdes dans les fruits et légumes traités thermiquement. Innovations Agronomiques (2014); 42: 125-137.
- Raffo A, La Malfa G, Fogliano V, Maiani G, Quaglia G. "Seasonal variations in antioxidant components of cherry tomatoes". Journal of Food Composition and Analysis (2006); 19: 11-19. https://doi.org/10.1016/j.jfca.2005.02.003.
- Gautier H, Diakou-Verdin V, Benard C, Reich M, Buret M, Bourgaud F, Poessel J-L, Génard M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agricultural and Food Chemistry (2008); 56: 1241-1250. https://doi.org/10.1021/jf072196t.
- Boudjeko T, Djocgoue PF, Nankeu DJ, Mbouobda HD, Omokolo ND, El Hadrami I. Luteolin Derivatives and Heritability of Resistance to Phytophthora megakarya in Theobroma cacao. Australasian Plant Pathology (2007); 36: 56-61. https://doi.org/10.1071/AP06083.
- Marigo G. Méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analysis (1973); 2: 106-110.
- Benakmoum A. Effet du lycopène sur certains paramètres structuraux et fonctionnels chez le rat en croissance. Thèse de Doctorat de l’École Nationale Supérieure Agronomique El Harrach Alger (2009); 114.
- Katalinié V, Milos M, Modum D, Musi I, Boban M. Antioxidant effectiveness of selected wines in comparison with (+)- catéchine. Food Chemistry (2004); 86(4): 593-600. https://doi.org/10.1016/j.foodchem.2003.10.007.
- Oyaizu M. Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics (1986); 44 (6): 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307.
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry (1956); 28(3): 350-356. https://doi.org/10.1021/ac60111a017.
- Olabode OS, Sola O, Akanbi WB, Adesina GO, Babajide PA. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences (2007); 3(4): 503-507.
- Kaho F, Yemefack M, Feujio-Teguefouet P, Tchantchaouang JC. Effet combiné des feuilles de Tithonia diversifolia et des engrais inorganiques sur les rendements du maïs et les propriétés d’un sol ferralitique au Centre Cameroun. Tropicultura (2011); 29(1): 39-45.
- Hafifah S, Maghfoer M, Prasetya B. The potential of Tithonia diversifolia green manure for improving soil quality for cauliflower (Brassica oleracea var. Brotrytis L.). Journal of degraded and mining Lands Management (2016); 2(3): 499-506. https://doi.org/10.15243/jdmlm.2016.032.499.
- Dieng MI, Fall DA, Diatta-Badji K, Sarr A, Sene M, Sene M, Mbaye A, Diatta W, Bassene E. Evaluation de l’activité antioxydante des extraits hydro-éthanoliques des feuilles et écorces de Piliostigma thonningii Shumach. International Journal of Biological and Chemical Sciences (2017); 11(2): 768-776. https://doi.org/10.4314/ijbcs.v11i2.19.
- Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Journal of Life Sciences (2004); 74: 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047.
- Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martínez JP, Lutts STomato fruit development and metabolism. Frontiers in Plant Science (2019); 10: 1554. https://doi.org/10.3389/fpls.2019.01554.
- Zeng J, Zhao J, Dong B, Cai X, Jiang J, Xue R, Yao F, Dong Y, Liu C. Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress. Journal on Nutritional Biochemistry (2019); 66: 70-78. https://doi.org/10.1016/j.jnutbio.2019.01.002.
- Doyle LM. Implications for human health, A review. Advances in Food Technology and Nutritional Sciences (2020); 6 (1): 1-12. http://dx.doi.org/10.17140/AFTNSOJ-6-163.
- Ojeil A, El Darra N, El Hajj Y, Mouncef PB, Rizk TJ, Maroun RG. Identification et caractérisation des composés phénoliques extraits du raisin château Ksara. Lebanese Science Journal (2010); 11(2): 117-131.
- Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L, Kim HS, Christow-Tzelkov K, Breemen RV. Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Experimental Biology and Medecine (2002); 227(10); 886-893. https://doi.org/10.1177/153537020222701008.
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.