In-vitro Antifungal efficacy of Some Medicinal Plants

In-vitro Antifungal efficacy of Some Medicinal Plants

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Awatif A. Elegami, El Amin I. Elnima, Gamal E.B. El Ghazali

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2615 27 50 10-15 Volume 11 - Oct 2022

Abstract

The aims of the present study are to examine in-vitro antifungal activity of crude extracts of Sudanese medicinal plants against two fungal species in order to verify their possible inhibitory activity and to identify the bioactive compounds responsible for the observed activity. Minimum inhibitory concentration (MIC) and phytochemical screening were investigated for the most active extracts to detect the active group of secondary metabolites. Agar diffusion method was used to test their sensitivity. Chloroform, methanol and aqueous extracts of a total number of 23 plants belonging to 19 genera and 17 families were investigated against Saccharomyces cerevisiae and Candida albicans. Among them, seven plant extracts showed efficacy against at least one of the two fungal cultures, and the methanol extracts of the different plants species exhibited a well marked antifungal activity. The bark methanolic extract of Terminalia arjuna (Combretaceae), gave the lowest minimum inhibitory concentration (MIC) value (4.25 μg/ml) against C. albicans, whereas the stem methanolic extracts of Anogeissus schimperi (Combretaceae), gave the lowest MIC value (0.18 μg/ml) against S. cerevisiae.

Keywords

Combretaceae, Inhibitory Effects, Candida albicans, Saccharomyces cerevisiae, MIC

References

  1. Arif, T., Bhosale, J.D., Kumar, N., Mandal, T.K., Bendre, R.S., Lavekar, G.S. and Dabur, R. (2009). Natural products- antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7): 621-688.Doi: 10.1080/10286020902942350.
  2. Baba-Moussa, F., Akpagana, K. and Bouchet, P. (1999). Antifungal activities of seven West African Combretaceae used in traditional medicine. Journal of Ethnopharmacology, 66(3): 335-338. Doi: 10.1016/s0378-8741(98)00184-6.
  3. Barnard, R.T. (2019). The zone of inhibition. Clinical Chemistry, 65 (6): 819. Doi: 10.1373/clinchem.2018.29980.
  4. Batawila, K., Kokou, K., Koumaglo, K., Gbeassor, M., de Foucault, B., Bouchet, Ph. K., and Akpagana, K. (2005). Antifungal activities of five Combretaceae used in Togolese traditional medicine. Fitoterapia, 76(2): 264-268. Doi: 10.1016/j.filtote.2004.12.007.
  5. Blair, J.E., Lennette, E.H. and Truant, J.P. (1970). Manual of clinical microbiology. American Society for Microbiology, Bethesda, Maryland, USA.
  6. Brown, D.F.J. and Blowers, R. (1978). Disc methods of sensitivity testing and other semiquantitative methods. In: Laboratory methods in antimicrobial chemotherapy, Reeves, D.S., Philips, I., Williams, J.D., Wise, R. (eds.). Edinburgh: Churchill-Livingstone, 8-30.
  7. Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Review, 10:564-582.
  8. Di Santo, R. (2010). Natural products as antifungal agents against clinically relevant pathogens. Natural Product Reports, 27(7):1084-1098. Doi:10.1039/b914961a.
  9. Farnsworth, N.R. (1983). Natural products and Drug Development. P. Krogsgaard- Larsen, S. B, Christensen and Kofod, H.) (Ed), 23. Munksgaard, Copenhagen.
  10. Fyhrquist, P., Mwasumbi, L., Haeggstrom, C.A., Vuorela, H., Hiltunen, R. and Vuorela, P. (2008). Antifungal activity of selected species of Terminalia, Pteleopsis and Combretum (Combretaceae) collected in Tanzania. Pharmaceutical Biology, 42(4-5): 308-317. Doi:10.1080/13880200490511891.
  11. Garcia, V.M.N., Rojas, G., Zepeda, L.G., Aviles, M., Fuentes, M., Herrera, A. and Jimenez, E. (2006). Antifungal and antibacterial activity of four selected Mexican medicinal plants. Pharmaceutical Biology, 44(4): 297-300. Doi: 10.1080/13880200600715837.
  12. Gomes, A.R., Freitas, A.C., Duarte, A.C. and Rocha-Santos, T.A. (2021). Clinical trails for deriving bioactive compounds from marine invertebrates. In: Natural products in clinical trails, Atta-ur-Rahman, Anjum, S. & El Seedi, H. (eds.). Bentham Science Publishing Ltd. Doi: 10.2174/9781681082/34118010003.
  13. Kavanagh, F. (1972). Analytical microbiology, 2: 11, 24. Academic Press, New York.
  14. Latte, P.M. and Kolodziej, H. (2000). Antifungal effects of hydrolysable tannins and related compounds on dermatophytes, mould fungi and yeasts. Z. Naturforschung C.J. Biosci, 55(5-5): 467-472. Doi: 10.1515/znc-2000-5-625.
  15. Masoko, P., Picard, J. and Eloff, J.N. (2007). The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). South African Journal of Botany, 73(2): 173-183. Doi: 10.1016/j.sajb.2006.09.010.
  16. Mickymaray, S. (2019). Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics (basel), 8(4):257. Doi: 10.3390(antibiotics)8040257.
  17. Mourad, A. and Perfect, J.R. (2018). The war on cryptococcosis: a review of the antifungal arsenal. Memorias do Instituto Oswaldo Cruz, 113(7): e170391. Doi:10.159/0074-02760170391.
  18. Nigussie, D., Davey, G., Tufa, T.B., Brewster, M., Legesse, B.A., Fekadu, A. and Makonnen, E. (2021). Antibacterial and antifungal activities of Ethiopian medicinal plants: a systematic review. Frontiers in Pharmacology, 1(12): 633921. Doi: 10.3389/fphar.2021.633921.
  19. POWO (2021). Plants of the World Online (accessed 17 October 2021).
  20. Robbins, N., Caplan, T. and Cowen, L.E. (2017). Molecular evolution of antifungal drug resistance. Annual Review of Microbiology, 71:753-775. Doi: 10.1146/annurev-micro-030117-020345.
  21. Rodrigues, M.L. and Nosanchuk, J.D. (2020). Fungal diseases as neglected pathogens: a wake-up call to public health officials. PLoS Neglected Tropical Diseases, 14(2): e007964. Doi: 10.1371/journal.pntd.0007964.
  22. Savarirajan, D., Ramesh, V. and Muthaiyan, A. (2021). In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants. Journal of Analytical Science and Technology, 12(53). Doi: 10.1186/s40543-021-00304-3.
  23. Sepahvand, A., Ezatpour, B., Tarkhan, F., Bahmani, M., Khonsari, A. and Rafieian-Kopaei, M. (2017). Phytotherapy in fungi and fungal disease: a review of effective medicinal plants on important fungal strains and diseases. International Journal of Pharmaceutical Sciences and Research, 8(11): 4473-4495. Doi:10.13040/IJPSR.0975-8232.8(11).4473-95.
  24. Simonetti, G., Brasili, E. and Pasqua, G. (2020). Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against Human pathogens. Molecules, 25(16): 3748. Doi:10.3390/molecules25263748.
  25. Vandeputte, P., Ferrari, S. and Coste, A.T. (2012). Antifungal resistance and new strategies to control fungal infections. International Journal of Microbiology, 2012(3): 713687. Doi: 10.1155/2012/713687.
  26. Vila, R., Freixa, B. and Canigueral, S. (2013). Antifungal compounds from plants. Recent Advances in Pharmaceutical Sciences, 3:23-43.
  27. Wickes, B.L. and Wiederhold, N.P. (2018). Molecular diagnostics in medical mycology. Nature Communications, 9:5135. Doi: 10.1038/s41467-018-07556-5.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue October 2022

Volume 11, October 2022


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper