Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.2620
~ 22
` 106
a 1-7
Volume 11 - Oct 2022
Abstract
Solanum lycopersicum (tomato) is one of the most common agricultural crops in the world. Its production in Mexico and the world depends on the application of nitrogenous fertilizer such as NH4NO3, which, used rationally or in reduced doses according to the needs of the plant, avoids environmental pollution in addition to the emission of N2O (oxide nitrous), greenhouse gas. One option to reduce and optimize is to apply Azotobacter vinelandii and Xanthobacter autotrophicus with a crude extract of carbon nanoparticles (CENC). The objective of this research was to analyze the effect of A. vinelandii and X. autotrophicus on the growth of S. lycopersicum at 70% NH4NO3plus a CENC. The experiment was carried out under a randomized block experimental design with two controls, six treatments and six replications. The response variables were: days of emergence and percentage (%) of germination, phenology: plant height (PH) and root length (LR) and biomass: aerial and root fresh and dry weight: (AFW/RFW) / (ADW/ RDW) at the seedling and flowering stages; experimental data was analyzed by ANOVA/Tukey (P<0.01). The results showed a positive effect of A. vinelandii and X. autotrophicus at 70% NH4NO3 and CENC on the germination percentage of S. lycopersicum seeds, as well as on phenology and biomass. In the seedling and flowering stages, the numerical values showed a statistical difference compared to S. lycopersicum without A. vinelandii and X. autotrophicus, or CENC, only at 100% NH4NO3 (relative control). These results support that S. lycopersicum fertilized at 50% NH4NO3 inoculated with A. vinelandii and X. autotrophicus was optimized and improved by CENC to prevent soil fertility loss and possible N2O emission.
Keywords
Soil, Nitrogen Fertilizer, Plant Growth Promoting Bacteria, Nanoparticules, Greenhouse Effect Gases
References
- Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, 110(29); 11911-11916.
- Soto-Mora, E. S., Hernández-Vázquez, M., Luna-Zendejas, H. S., Ortiz-Ortiz, E., & García-Gallegos, E. (2016). Evaluación del contenido de materia orgánica en suelos agrícolas y su relación carbono/nitrógeno. Revista Iberoamericana de Ciencias, 3(5): 98-102.
- Studdert, G. A., Domingo, M. N., García, G. V., Monterubbianesi, M. G., & Domínguez, G. F. (2017). Carbono orgánico del suelo bajo sistemas de cultivo contrastantes y su relación con la capacidad de proveer nitrógeno. Ciencia del suelo, 35(2): 285-299.
- Silva, A. R. E., Cobelas, M. Á., & González, E. M. (2017). Impactos del nitrógeno agrícola en los ecosistemas acuáticos. Ecosistemas, 26(1): 37-44.
- Hatami, M. (2017). Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Ecotoxicology and environmental safety, 142(1): 274-283.
- Merinero, M., Alcudia, A., Begines, B., Martínez, G., Martín-Valero, M. J., Pérez-Romero, J. A., ... & Pajuelo, E. (2022). Assessing the Biofortification of Wheat Plants by Combining a Plant Growth-Promoting Rhizobacterium (PGPR) and Polymeric Fe-Nanoparticles: Allies or Enemies? Agronomy, 12(228): 1-19.
- Secretaria de Medio Ambiente y Recursos Naturales. (2000). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. NOM-021-RECNA.
- Sánchez-Yáñez J.M. (2007). Breve Tratado de Microbiología Agrícola, teoría y práctica, Ed. Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo. Corporativo de investigación sustentable, SA de CV, Centro de investigación y Desarrollo del Estado de Michoacán, SEDAGRO. Morelia, Michoacán, México. ISBN 978-970-95424-1-7.
- Contreras-Santos, J. L., Martinez-Atencia, J., Cadena-Torres, J., Novoa-Yanez, R. S., & Tamara-Morelos, R. (2020). Una evaluación de las propiedades fisicoquímicas de suelo en sistema productivo de maíz-algodón y arroz en el Valle del Sinú en Colombia. Revista Actualidad & Divulgación Científica, 23(2): 1-10.
- Abdelmoteleb, A., Valdez-Salas, B., Ceceña-Duran, C., Tzintzun-Camacho, O., Gutiérrez-Miceli, F., Grimaldo-Juarez, O., & González-Mendoza, D. 2017. Silver nanoparticles from Prosopis glandulosa and their potential application as biocontrol of Acinetobacter calcoaceticus and Bacillus cereus. Chemical Speciation & Bioavailability, 29(1): 1-5.
- Lira Saldivar, R. H., Méndez Argüello, B., Vera Reyes, I., & De los Santos Villarreal, G. (2018). Agronanotecnología: una nueva herramienta para la agricultura moderna. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 50(2): 395-411.
- Vásconez, R. D. A., Moya, E. M. T., Jara, K. A. M., & Chiluisa-Utreras, V. P. (2020). Identificación molecular de cepas de Bacillus spp. y su uso como rizobacteria promotora del crecimiento en tomate (Lycopersicum esculentum Mill.). Scientia Agropecuaria, 11(4); 575-581.
- Ahmed, B., Syed, A., Rizvi, A., Shahid, M., Bahkali, A. H., Khan, M. S., & Musarrat, J. (2021). Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. Environmental Pollution, 269(1): 116-218.
- Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10): 3221-3227.
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.