Multifunctional Porosity in Biochar

Multifunctional Porosity in Biochar

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2694 26 64 41-54 Volume 12 - Jul 2023


Biochar is the black fine-grained residue obtained by pyrolitic decomposition processes of biomass, achieved at moderate temperatures under oxygen-limiting conditions. This pyrolysis residue has a hierarchical pore structure resulting in a large specific surface area accompanied by a strong adsorption capacity. Due to the relevant presence of mesopores, biochar can have different roles in storage applications, ranging from for the adsorption of pollutant gases, such as carbon dioxide, to the shape-stabilization of phase-change materials (PCMs), used for thermal energy storage. Biochar is overcoming the leakage problem of PCMs by their encapsulation in the mesopores, whereas the same mesopores are the passageway to the micropores which constitute the packing space for gas adsorption.


Biochar, Composite Materials, Biomass Based Porous Carbon, Mesoporous Materials, Mesoporous Biochar, Phase Chance Materials, Shape Stabilized Phase Change Materials, Latent Heat Storage Biocomposites, Carbon Dioxide Adsorption


  1. Abdeali, G., Bahramian, A. R., & Abdollahi, M. (2020). Review on nanostructure supporting material strategies in shape-stabilized phase change materials. Journal of Energy Storage, 29, 101299.
  2. Akgün, M., Aydın, O., & Kaygusuz, K. (2007). Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Conversion and Management, 48(2), 669-678.
  3. Alhelal, A., Mohammed, Z., Jeelani, S., & Rangari, V. K. (2021). 3D printing of spent coffee ground derived biochar reinforced epoxy composites. Journal of Composite Materials, 55(25), 3651-3660.
  4. Andrade, T. S., Vakros, J., Mantzavinos, D., & Lianos, P. (2020). Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chemical Engineering Journal Advances, 4, 100061.
  5. Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource technology, 128, 593-597.
  6. Angın, D., Altintig, E., & Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, 542-549.
  7. Arrigo, R., Jagdale, P., Bartoli, M., Tagliaferro, A., & Malucelli, G. (2019). Structure–property relationships in polyethylene-based composites filled with biochar derived from waste coffee grounds. Polymers, 11(8), 1336.
  8. Atinafu, D. G., Chang, S. J., & Kim, S. (2020). Infiltration properties of n-alkanes in mesoporous biochar: The capacity of smokeless support for stability and energy storage. Journal of Hazardous Materials, 399, 123041.
  9. Atinafu, D. G., Chang, S. J., Kim, K. H., & Kim, S. (2020). Tuning surface functionality of standard biochars and the resulting uplift capacity of loading/energy storage for organic phase change materials. Chemical Engineering Journal, 394, 125049.
  10. Atinafu, D. G., Yun, B. Y., Wi, S., Kang, Y., & Kim, S. (2021). A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Environmental Research, 195, 110853.
  11. Atinafu, D. G., Wi, S., Yun, B. Y., & Kim, S. (2021). Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy, 216, 119294.
  12. Bartoli, M., & Giorcelli, M. (Eds.). (2022). Recent Perspectives in Pyrolysis Research. IntechOpen Editions
  13. Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A review of nonsoil biochar applications. Materials, 13(2), 261.
  14. Bartoli, M., Rosi, L., & Frediani, M. (2020). From Waste to Chemicals: Bio-Oils Production Through Microwave-Assisted Pyrolysis. In Production of Biofuels and Chemicals with Pyrolysis (pp. 207-231). Springer, Singapore.
  15. Bartoli, M., Arrigo, R., Malucelli, G., Tagliaferro, A., & Duraccio, D. (2022). Recent advances in biochar polymer composites. Polymers, 14(12), 2506.
  16. Bordoloi, U., Das, D., Kashyap, D., Patwa, D., Bora, P., Muigai, H. H., & Kalita, P. (2022). Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings. Journal of Energy Storage, 55, 105801.
  17. Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp. 109-146), Elsevier, 2019.
  18. Brewer, C.E., & Brown, R.C. (2012). Biochar. Comprehensive Renewable Energy. Elsevier, pp. 357–384
  19. Chapotard, C., & Tondeur, D. (1983). Dynamics of latent heat storage in fixed beds, a non-linear equilibrium model - The analogy with chromatography. Chemical Engineering Communications, 24(4-6), 183-204.
  20. Chen, N., Ren, J., Ye, Z., Xu, Q., Liu, J., & Sun, S. (2016). Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis. Bioresource technology, 221, 534-540.
  21. Chen, Y., Zhang, X., Chen, W., Yang, H., & Chen, H. (2017). The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource technology, 246, 101-109.
  22. Chen, Y., Cui, Z., Ding, H., Wan, Y., Tang, Z., & Gao, J. (2018). Cost-effective biochar produced from agricultural residues and its application for preparation of high performance form-stable phase change material via simple method. International journal of molecular sciences, 19(10), 3055.
  23. Cheng, B. H., Tian, K., Zeng, R. J., & Jiang, H. (2017). Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy & Fuels, 1(4), 891-898.
  24. Colomba, A., Berruti, F., & Briens, C. (2022). Model for the physical activation of biochar to activated carbon. Journal of Analytical and Applied Pyrolysis, 168, 105769.
  25. Daniarta, S., Nemś, M., Kolasiński, P., & Pomorski, M. (2022). Sizing the Thermal Energy Storage Device Utilizing Phase Change Material (PCM) for Low-Temperature Organic Rankine Cycle Systems Employing Selected Hydrocarbons. Energies, 15(3), 956.
  26. Danish, A., Mosaberpanah, M. A., Salim, M. U., Ahmad, N., Ahmad, F., & Ahmad, A. (2021). Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Construction and Building Materials, 300, 124295.
  27. Das, D., Bordoloi, U., Muigai, H. H., & Kalita, P. (2020). A novel form stable PCM based bio composite material for solar thermal energy storage applications. Journal of Energy Storage, 30, 101403.
  28. Das, C., Tamrakar, S., Kiziltas, A., & Xie, X. (2021). Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers, 13(16), 2663.
  29. Drissi, S., Ling, T. C., Mo, K. H., & Eddhahak, A. (2019). A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renewable and Sustainable Energy Reviews, 110, 467-484.
  30. Du, K., Calautit, J., Wang, Z., Wu, Y., & Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied energy, 220, 242-273.
  31. Fang, Q. R., Makal, T. A., Young, M. D., & Zhou, H. C. (2010). Recent advances in the study of mesoporous metal-organic frameworks. Comments on Inorganic Chemistry, 31(5-6), 165-195.
  32. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
  33. Giorcelli, M., & Bartoli, M. (2019). Development of coffee biochar filler for the production of electrical conductive reinforced plastic. Polymers, 11(12), 1916.
  34. Goud, M., & Raval, F. (2022). A sustainable biochar-based shape stable composite phase change material for thermal management of a lithium-ion battery system and hybrid neural network modeling for heat flow prediction. Journal of Energy Storage, 56, 106163.
  35. Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., & Liu, L. (2022). Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Science & Technology, 100059.
  36. Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renewable and sustainable energy reviews, 12(2), 397-416.
  37. He, M., Xu, Z., Hou, D., Gao, B., Cao, X., Ok, Y.S., Rinklebe, J., Bolan, N.S. and Tsang, D.C., 2022. Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 3(7), pp.444-460.
  38. Hekimoğlu, G., Sarı, A., Kar, T., Keleş, S., Kaygusuz, K., Tyagi, V. V., Sharma, R. K., Al-Ahmed, A., Al-Sulaiman, F. A., & Saleh, T. A. (2021). Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties. Journal of Energy Storage, 35, 102288.
  39. Hu, X., Huang, H., Hu, Y., Lu, X., & Qin, Y. (2021). Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage. Solar Energy Materials and Solar Cells, 219, 110790.
  40. Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., & Kim, S. (2019). Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Chemosphere, 236, 124269.
  41. Jeon, J., Park, J.H., Wi, S., Kim, K.-H., & Kim, S. (2019). Thermal performance enhancement of a phase change material with expanded graphite via ultrasonication. J. Ind. Eng. Chem. 79, 437–442.
  42. Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., & Kim, S. (2019). Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Environmental research, 172, 637-648.
  43. Jiang, T., Zhang, Y., Olayiwola, S., Lau, C., Fan, M., Ng, K., & Tan, G. (2022). Biomass-derived porous carbons support in phase change materials for building energy efficiency: a review. Materials Today Energy, 23, 100905.
  44. Jiang, D., Li, H., Wang, S., Cheng, X., Bartocci, P., & Fantozzi, F. (2023). Insight the CO2 adsorption onto biomass-pyrolysis derived char via experimental analysis coupled with DFT calculation. Fuel, 332, 125948.
  45. Kan, T., Strezov, V., & Evans, T.J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sust. Energ. Rev. 57, Kan1126–1140.
  46. Khadiran, T., Hussein, M. Z., Zainal, Z., & Rusli, R. (2015). Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy, 82, 468-478.
  47. Kim, M. J., Choi, S. W., Kim, H., Mun, S., & Lee, K. B. (2020). Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chemical Engineering Journal, 397, 125404.
  48. Kim, Y. U., Yang, S., Yun, B. Y., & Kim, S. (2022). Evaluation of energy consumption in apartment buildings with biochar and phase‐change material aggregate‐applied artificial stone finishing materials. International Journal of Energy Research.
  49. Lee, S. C., Kitamura, Y., Chien, C. C., Cheng, C. S., Cheng, J. H., Tsai, S. H., & Hsieh, C. C. (2022). Development of Meso-and Macro-Pore Carbonization Technology from Biochar in Treating the Stumps of Representative Trees in Taiwan. Sustainability, 14(22), 14792.
  50. Legan, M., Gotvajn, A. Ž., & Zupan, K. (2022). Potential of biochar use in building materials. Journal of Environmental Management, 309, 114704.
  51. Lepak-Kuc, S., Kiciński, M., Michalski, P. P., Pavlov, K., Giorcelli, M., Bartoli, M., & Jakubowska, M. (2021). Innovative Biochar-Based Composite Fibres from Recycled Material. Materials, 14(18), 5304.
  52. Li, C., Yu, H., Song, Y., & Zhao, M. (2018). Synthesis and characterization of PEG/ZSM-5 composite phase change materials for latent heat storage. Renewable Energy, 121, 45-52.
  53. Li, S., Wang, H., Gao, X., Niu, Z., & Song, J. (2023). Design of corn straw/paraffin wax shape-stabilized phase change materials with excellent thermal buffering performance. Journal of Energy Storage, 57, 106217.
  54. Liang, Q., Pan, D., & Zhang, X. (2022). Construction and application of biochar-based composite phase change materials. Chemical Engineering Journal, 139441.
  55. Lu, S., & Zong, Y. (2018). Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environmental Science and Pollution Research, 25(30), 30401-30409.
  56. Lv, L., Wang, J., Ji, M., Zhang, Y., Huang, S., Cen, K., & Zhou, H. (2022). Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms. Renewable Energy, 195, 1238-1252.
  57. Machado, L. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L., Collazzo, G. C., & Dotto, G. L. (2020). Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Management, 113, 96-104.
  58. Maljaee, H., Madadi, R., Paiva, H., Tarelho, L., & Ferreira, V. M. (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Construction and Building Materials, 283, 122757.
  59. Mašek, O., Buss, W., & Sohi, S. (2018). Standard biochar materials. Environmental science & technology, 52(17), 9543-9544.
  60. Mitran, R. A., Berger, D., Munteanu, C., & Matei, C. (2015). Evaluation of different mesoporous silica supports for energy storage in shape-stabilized phase change materials with dual thermal responses. The Journal of Physical Chemistry C, 119(27), 15177-15184.
  61. Mukherjee, A., Borugadda, V. B., Dynes, J. J., Niu, C., & Dalai, A. K. (2021). Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. Journal of Environmental Chemical Engineering, 9(5), 106049.
  62. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W., & Sajdak, M. (2022). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 126128.
  63. Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (Eds.). (2015). Biochar: Production, characterization, and applications. CRC press.
  64. Ok, Y. S., Tsang, D. C., Bolan, N., & Novak, J. M. (Eds.). (2018). Biochar from biomass and waste: fundamentals and applications. Elsevier.
  65. Pandey, D., Chhimwal, M., & Srivastava, R. K. (2022). Engineered Biochar as Construction Material. In Engineered Biochar (pp. 303-318). Springer, Singapore.
  66. Py, X., Olives, R., & Mauran, S. (2001). Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of heat and mass transfer, 44(14), 2727-2737.
  67. Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013). Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, 65, 287-293.
  68. Rathod, M. K. (2018). Thermal stability of phase change material. IntechOpen. DOI: 10.5772/intechopen.75923
  69. Salamon, D. (2014). Advanced ceramics. In Advanced ceramics for dentistry (pp. 103-122). Butterworth-Heinemann.
  70. Sedlak, D. (2018). Sifting through the embers. Environmental Science & Technology, 52(6), 3327-3328.
  71. Shen, W., & Fan, W. (2013). Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 1(4), 999-1013.
  72. Shin, J., Lee, Y. G., Lee, S. H., Kim, S., Ochir, D., Park, Y., Kim, J., & Chon, K. (2020). Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. Journal of Hazardous Materials, 400, 123102.
  73. Shin, J., Kwak, J., Kim, S., Son, C., Lee, Y. G., Baek, S., Park, Y., Chae, K. J., Yang, E., & Chon, K. (2022). Facilitated physisorption of ibuprofen on waste coffee residue biochars through simultaneous magnetization and activation in groundwater and lake water: Adsorption mechanisms and reusability. Journal of Environmental Chemical Engineering, 107914.
  74. Sivanathan, A., Dou, Q., Wang, Y., Li, Y., Corker, J., Zhou, Y., & Fan, M. (2020). Phase change materials for building construction: An overview of nano-micro-encapsulation. Nanotechnology Reviews, 9(1), 896-921.
  75. Schmidt, H. P. (2014). The use of biochar as building material. The Biochar Journal 2014, Arbaz, Switzerland. ISSN 2297-1114. Version of 12 May 2014. Accessed: 17.05.2021
  76. Song, C., Wu, S., Cheng, M., Tao, P., Shao, M., & Gao, G. (2013). Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability, 6(1), 86-98.
  77. Sparavigna, A. C., Giurdanella, S., & Patrucco, M. (2011). Behaviour of Thermodynamic Models with Phase Change Materials under Periodic Conditions. Energy and Power Engineering, 3(02), 150. DOI: 10.4236/epe.2011.32019
  78. Sparavigna, A.C., Giorcelli, M., & Guastella, S.A. (2017). Three-Dimensional Rendering of Biochar Surfaces from their FESEM Images. Biochar: Production, Characterization and Applications, Aug 2017, Alba, Italy, 2017. ⟨hal-01577075⟩
  79. Sparavigna, A. C. (2022). Biochar Shape-Stabilized Phase-Change Materials for Thermal Energy Storage. SSRN. DOI: 10.2139/ssrn.4310141
  80. Sparavigna, A. C. (2023). Wood and Delignified Wood for Shape-Stabilized Phase-Change Materials in Application to Thermal Energy Storage. SSRN. DOI: 10.2139/ssrn.4318007
  81. Sparavigna, A. C. (2023). The Catcher in the Water: Magnetic Biochar for the Treatment of Wastewater. SSRN. DOI: 10.2139/ssrn.4409849
  82. Suarez-Riera, D., Lavagna, L., Bartoli, M., Giorcelli, M., Pavese, M., & Tagliaferro, A. (2022). The influence of biochar shape in cement-based materials. Magazine of Concrete Research, 1-13.
  83. Tan, X. F., Liu, S. B., Liu, Y. G., Gu, Y. L., Zeng, G. M., Hu, X. J., Wang, X., Liu, S. H., & Jiang, L. H. (2017). Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource technology, 227, 359-372.
  84. Tan, K. H., Wang, T. Y., Zhou, Z. H., & Qin, Y. H. (2021). Biochar as a partial cement replacement material for developing sustainable concrete: An overview. Journal of Materials in Civil Engineering, 33(12), 03121001.
  85. Tian, S., Yang, R., Pan, Z., Su, X., Li, S., Wang, P., & Huang, X. (2022). Anisotropic reed-stem-derived hierarchical porous biochars supported paraffin wax for efficient solar-thermal energy conversion and storage. Journal of Energy Storage, 56, 106153.
  86. Trisnadewi, T., & Putra, N. (2020). Phase change material (PCM) with shaped stabilized method for thermal energy storage: A review. In AIP Conference Proceedings (Vol. 2255, No. 1, p. 030065). AIP Publishing LLC.
  87. Undri, A., Abou-Zaid, M., Briens, C., Berruti, F., Rosi, L., Bartoli, M., Frediani, M., & Frediani, P. (2015). A simple procedure for chromatographic analysis of bio-oils from pyrolysis. Journal of analytical and applied pyrolysis, 114, 208-221.
  88. Vardon, D. R., Moser, B. R., Zheng, W., Witkin, K., Evangelista, R. L., Strathmann, T. J., Rajagopalan, K., & Sharma, B. K. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering, 1(10), 1286-1294.
  89. Wan, Y. C., Chen, Y., Cui, Z. X., Ding, H., Gao, S. F., Han, Z., & Gao, J. K. (2019). A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage. Scientific Reports, 9(1), 1-10.
  90. Xie, B., Li, C., Zhang, B., Yang, L., Xiao, G., & Chen, J. (2020). Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater. Energy and Built Environment, 1(2), 187-198.
  91. Xiong, T., Ok, Y. S., Dissanayake, P. D., Tsang, D. C., Kim, S., Kua, H. W., & Shah, K. W. (2022). Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Science of the Total Environment, 827, 154341.
  92. Yang, H., Xu, Z., Cui, H., Bao, X., Tang, W., Sang, G., & Chen, X. (2022). Cementitious composites integrated phase change materials for passive buildings: An overview. Construction and Building Materials, 361, 129635.
  93. Yang, R., Guo, X., Wu, H., Kang, W., Song, K., Li, Y., Huang, X., & Wang, G. (2022). Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage. Biochar, 4(1), pp.1-15.
  94. Yazdani, M. R., Lagerström, A., & Vuorinen, V. (2022). Simultaneous effect of biochar-additive and lightweight heat exchanger on phase change material for low-grade thermal energy storage. Journal of Energy Storage, 55, 105478.
  95. Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., & Chen, H. (2014). Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20-27.
  96. Zhang, R., Dai, Q., You, Z., Wang, H., & Peng, C. (2018). Rheological performance of bio-char modified asphalt with different particle sizes. Applied Sciences, 8(9), 1665.
  97. Zhang, X., Wang, X., Zhong, C., & Lin, Q. (2020). Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage. Journal of Industrial and Engineering Chemistry, 85, 208-218.
  98. Zhang, Y., He, M., Wang, L., Yan, J., Ma, B., Zhu, X., Ok, S. Y., Mechtcherine, V., & Tsang, D. C. (2022). Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), 1-25.
  99. Zhao, S., Huang, B., Shu, X., & Ye, P. (2014). Laboratory investigation of biochar-modified asphalt mixture. Transportation Research Record, 2445(1), 56-63.
  100. Zhou, Y., Li, C., Wu, H., & Guo, S. (2020). Construction of hybrid graphene oxide/graphene nanoplates shell in paraffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 597, 124780.
  101. Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental pollution, 227, 98-115.
  102. Ziegler, D., Palmero, P., Giorcelli, M., Tagliaferro, A., & Tulliani, J. M. (2017). Biochars as innovative humidity sensing materials. Chemosensors, 5(4), 35.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper