Iron Oxide Fe3O4 Nanoparticles with Intrinsic Conducting Polymers and Biochar to Improve the Electromagnetic Shielding Performance of Light Weight Absorption-Type Materials

Iron Oxide Fe3O4 Nanoparticles with Intrinsic Conducting Polymers and Biochar to Improve the Electromagnetic Shielding Performance of Light Weight Absorption-Type Materials

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2709 23 43 5-23 Volume 12 - Aug 2023


Magnetic iron oxide nanoparticles (Fe3O4) can be dispersed in a supporting material so that the composite can better respond to electromagnetic fields, absorbing a part of their energy. In the discussion here proposed we will consider the role of these nanoparticles in applications for electromagnetic interference (EMI) shielding. Inserted in intrinsically conducting polymers (ICPs) for instance, the nanoparticles are increasing EMI shielding effectiveness of polymer, producing light weight "absorption-type" shields, which are specifically relevant for absorbing microwaves. Encapsulation of Fe3O4 nanoparticles with polypyrrole and polyaniline will be described in detail and the recent biochar-based composites, Fe3O4@biochar, will be discussed too.


Magnetic iron oxide nanoparticles, Fe3O4, Magnetite, Electromagnetic interference shielding effectiveness, EMI-SE, Reflection loss, Microwaves absorption, Intrinsically conducting polymers, Polypyrrole, Polyaniline, EMI shielding textiles, Biochar


  1. Adebayo, L. L., Soleimani, H., Yahya, N., Abbas, Z., Wahaab, F. A., Ayinla, R. T., & Ali, H. (2020). Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceramics International, 46(2), 1249-1268.
  2. Arora, M., Wahab, M. A., & Saini, P. (2014). Permittivity and electromagnetic interference shielding investigations of activated charcoal loaded acrylic coating compositions. Journal of Polymers, 2014.
  3. Avloni, J., Florio, L., Henn, A. R., Lau, R., Ouyang, M., & Sparavigna, A. (2006). Electromagnetic shielding with polypyrrole-coated fabrics. arXiv preprint cond-mat/0608664.
  4. Avloni, J., Ouyang, M., Florio, L., Henn, A. R., & Sparavigna, A. (2007). Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20(3), 241-254.
  5. Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A. R., & Sparavigna, A. (2008). Polypyrrole-coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles, 38(1), 55-68.
  6. Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A review of nonsoil biochar applications. Materials, 13(2), 261.
  7. Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Lehigh Preserve Collection, Volume 15, Paper 5.
  8. Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp. 109-146), Elsevier, 2019.
  9. Brodie, G., Jacob, M. V., & Farrell, P. (2015). Microwave and radio-frequency technologies in agriculture. In Microwave and Radio-Frequency Technologies in Agriculture. De Gruyter Open Poland.
  10. Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., & Yuan, J. (2010). The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 48, 788–796.
  11. Cao, M.S., Yang, J., Song, W.L., Zhang, D.Q., Wen, B., Jin, H.B., Hou, Z.L., & Yuan, J. (2012). Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS applied materials & interfaces, 4(12), 6949-6956.
  12. Chakradhary, V. K., Juneja, S., & Akhtar, M. J. (2020). Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite. Materials Today Communications, 25, 101386.
  13. Chen, X., Gu, Y., Liang, J., Bai, M., Wang, S., Li, M., & Zhang, Z. (2020). Enhanced microwave shielding effectiveness and suppressed reflection of chopped carbon fiber felt by electrostatic flocking of carbon fiber. Composites Part A: Applied Science and Manufacturing, 139, 106099.
  14. Chen, T., Cai, J., Gong, D., Liu, C., Liu, P., Cheng, X., & Zhang, D. (2023). Facile fabrication of 3D biochar absorbers dual-loaded with Fe3O4 nanoparticles for enhanced microwave absorption. Journal of Alloys and Compounds, 935, 168085.
  15. Cornell, R. M., & Schwertmann, U. (1996). The iron oxides. VCH Press, Weinheim, Germany.
  16. Das, N., Mahadela, A. S., Nanthagopalan, P., & Verma, G. (2022). Investigation on electromagnetic pulse shielding of conductive concrete. Proceedings of the Institution of Civil Engineers-Construction Materials, 1-16.
  17. Deng, J., Peng, Y., He, C., Long, X., Li, P., & Chan, A. S. (2003). Magnetic and conducting Fe3O4–polypyrrole nanoparticles with core‐shell structure. Polymer international, 52(7), 1182-1187.
  18. Deng, L., & Han, M. (2007). Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Applied physics letters, 91(2), 023119.
  19. Dey, A., De, A., & De, S. K. (2005). Electrical transport and dielectric relaxation in Fe3O4–polypyrrole hybrid nanocomposites. Journal of Physics: Condensed Matter, 17(37), 5895.
  20. Ding, J., Wang, L., Zhao, Y., Xing, L., Yu, X., Chen, G., Zhang, J., & Che, R. (2019). Boosted interfacial polarization from multishell TiO2@ Fe3O4@ PPy heterojunction for enhanced microwave absorption. Small, 15(36), p.1902885.
  21. Du, Y., Liu, W., Qiang, R., Wang, Y., Han, X., Ma, J., & Xu, P. (2014). Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS applied materials & interfaces, 6(15), 12997-13006.
  22. Everaere, E. (2015). Polarimetry in bistatic configuration for ultra high frequency radar measurements on forest environment (Doctoral dissertation, Ecole Polytechnique).
  23. Fallah, R., Hosseinabadi, S., & Pourtaghi, G. (2022). Influence of Fe3O4 and carbon black on the enhanced electromagnetic interference (EMI) shielding effectiveness in the epoxy resin matrix. Journal of Environmental Health Science and Engineering, 20(1), 113-122.
  24. Fang, J., Shang, Y., Chen, Z., Wei, W., Hu, Y., Yue, X., & Jiang, Z. (2017). Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. Journal of Materials Chemistry C, 5(19), 4695-4705.
  25. Ganguly, S., Bhawal, P., Ravindren, R., & Das, N. C. (2018). Polymer nanocomposites for electromagnetic interference shielding: a review. Journal of Nanoscience and Nanotechnology, 18(11), 7641-7669.
  26. Gao, S., An, Q., Xiao, Z., Zhai, S., & Shi, Z. (2018). Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC advances, 8(34), 19011-19023.
  27. Giorcelli, M., & Bartoli, M. (2019). Development of coffee biochar filler for the production of electrical conductive reinforced plastic. Polymers, 11(12), 1916.
  28. Guan, H., Wang, Q., Wu, X., Pang, J., Jiang, Z., Chen, G., Dong, C., Wang, L., & Gong, C. (2021). Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Composites Part B: Engineering, 207, p.108562.
  29. Guo, J., Song, H., Liu, H., Luo, C., Ren, Y., Ding, T., Khan, M.A., Young, D.P., Liu, X., Zhang, X. and Kong, J., 2017. Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. Journal of Materials Chemistry C, 5(22), pp.5334-5344.
  30. Katsenelenbaum, B. Z. (2006). High-frequency electrodynamics. John Wiley & Sons.
  31. Kaynak, A., Unsworth, J., Clout, R., Mohan, A. S., & Beard, G. E. (1994). A study of microwave transmission, reflection, absorption, and shielding effectiveness of conducting polypyrrole films. Journal of applied polymer science, 54(3), 269-278.
  32. Kruželák, J., Kvasničáková, A., Hložeková, K., Plavec, R., Dosoudil, R., Gořalík, M., Vilčáková, J. , & Hudec, I. (2021). Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers. Polymers, 13(17), 2937.
  33. Henn, A.R., & Silverman, B. (1991). New Developments in Metallized Products, Interference Technology Engineering Master (ITEM) Update, pp. 180-187.
  34. Henn, A. R., & Cribb, R. M. (1993). Modelling the shielding effectiveness of metallized fabrics, Interference Technology Engineering Master (ITEM) Update, p. 49-57.
  35. Hosseini, S. H., Mohseni, S. H., Asadnia, A., & Kerdari, H. (2011). Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. Journal of Alloys and Compounds, 509(14), 4682-4687.
  36. Hu, W., Zhang, J., Liu, B., Zhang, C., Zhao, Q., Sun, Z., Cao, H., & Zhu, G. (2021). Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Composites Communications, 24, p.100616.
  37. Jia, C., Xia, T., Ma, Y., He, N., Yu, Z., Lou, Z., & Li, Y. (2021). Fe3O4/α-Fe decorated porous carbon-based composites with adjustable electromagnetic wave absorption: impedance matching and loading rate. Journal of Alloys and Compounds, 858, 157706.
  38. Katsenelenbaum, B. Z. (2006). High-frequency electrodynamics. John Wiley & Sons.
  39. Kruželák, J., Kvasničáková, A., Hložeková, K., Plavec, R., Dosoudil, R., Gořalík, M., Vilčáková, J. and Hudec, I., 2021. Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers. Polymers, 13(17), p.2937.
  40. Le Bolay, N., Lakhal, R., & Hemati, M. (2020). Production of Hematite Micro-and Nanoparticles in a Fluidized Bed Process—Mechanism Study. KONA Powder and Particle Journal, 37, 244-257.
  41. Lee, Y., Lee, J., Bae, C. J., Park, J. G., Noh, H. J., Park, J. H., & Hyeon, T. (2005). Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 15, 503-509
  42. Li, Y., Chen, G., Li, Q., Qiu, G., & Liu, X. (2011). Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. Journal of Alloys and Compounds, 509(10), 4104-4107.
  43. Li, Y., Lan, J., Guo, R., Huang, M., Shi, K., & Shang, D. (2013). Microstructure and properties of Ni-Fe3O4 composite plated polyester fabric. Fibers and Polymers, 14(10), 1657-1662.
  44. Li, T., Bai, X., Qi, Y. X., Lun, N., & Bai, Y. J. (2016). Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta, 222, 1562-1568.
  45. Li, D., Liang, X., Quan, B., Cheng, Y., Ji, G., & Du, Y. (2017). Investigating the synergistic impedance match and attenuation effect of Co@ C composite through adjusting the permittivity and permeability. Materials Research Express, 4(3), 035604.
  46. Li, Z., Lin, H., Ding, S., Ling, H., Wang, T., Miao, Z., Zhang, M., Meng, A., & Li, Q. (2020). Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon, 167, pp.148-159.
  47. Li, J., Ma, W., Zhong, D., Li, K., Ma, J., Zhang, S., & Du, X. (2022). Oxygen vacancy concentration modulation of perovskite-based heterogeneous catalysts for Fenton-like oxidation of tetracycline. Journal of Cleaner Production, 362, 132469.
  48. Liang, Q., Pan, D., & Zhang, X. (2022). Construction and application of biochar-based composite phase change materials. Chemical Engineering Journal, 139441
  49. Lifšits, E. M., & Pitaevskij L. P. (1986). Elettrodinamica dei mezzi continui. Editori Riuniti Edizioni Mir.
  50. Liu, Z., Zhao, N., Shi, C., He, F., Liu, E., & He, C. (2019). Synthesis of three-dimensional carbon networks decorated with Fe3O4 nanoparticles as lightweight and broadband electromagnetic wave absorber. Journal of Alloys and Compounds, 776, 691-701.
  51. Liu, C., & Liao, X. (2020). Collagen fiber/Fe3O4/polypyrrole nanocomposites for absorption-type electromagnetic interference shielding and radar stealth. ACS Applied Nano Materials, 3(12), 11906-11915.
  52. Liu, Y., Liu, Y., & Drew, M. G. (2021). A theoretical investigation on the quarter-wavelength model—part 1: analysis. Physica Scripta, 96(12), 125003.
  53. Liu, Y., Liu, Y., & Drew, M. G. (2022). A theoretical investigation of the quarter-wavelength model-part 2: verification and extension. Physica Scripta, 97(1), 015806.
  54. Lou, Z., Zhang, Y., Zhou, M., Han, H., Cai, J., Yang, L., Yuan, C., & Li, Y. (2018). Synthesis of magnetic wood fiber board and corresponding multi-layer magnetic composite board, with electromagnetic wave absorbing properties. Nanomaterials, 8(6), 441.
  55. Lv, P., Xu, W., Li, D., Feng, Q., Yao, Y., Pang, Z., Lucia, L.A., & Wei, Q. (2016). Metal-based bacterial cellulose of sandwich nanomaterials for anti-oxidation electromagnetic interference shielding. Materials & Design, 112, 374-382.
  56. Marins, J. A., Soares, B. G., Barud, H. S., & Ribeiro, S. J. (2013). Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Materials Science and Engineering: C, 33(7), 3994-4001.
  57. McMichael, R. D., Shull, R. D., Swartzendruber, L. J., Bennett, L. H., & Watson, R. E. (1992). Magnetocaloric effect in superparamagnets. Journal of Magnetism and Magnetic Materials, 111(1-2), 29-33.
  58. Micheli, D., Apollo, C., Pastore, R., & Marchetti, M. (2010). X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Composites Science and Technology, 70(2), 400-409.
  59. Naito, Y., & Suetake, K. (1971). Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Transactions on Microwave Theory and Techniques, 19(1), 65-72.
  60. Natalio, F., Corrales, T. P., Feldman, Y., Lew, B., & Graber, E. R. (2020). Sustainable lightweight biochar-based composites with electromagnetic shielding properties. ACS omega, 5(50), 32490-32497.
  61. Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., & He, D. (2009). Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. Journal of Physics D: Applied Physics, 42(5), 055004.
  62. Nikolopoulos, C. D., Baklezos, A. T., Kapetanakis, T. N., Vardiambasis, I. O., Tsubota, T., & Kalderis, D. (2023). Characterization of the Electromagnetic Shielding Effectiveness of Biochar-Based Materials. IEEE Access, 11, 6413-6420.
  63. Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (Eds.). (2015). Biochar: Production, characterization, and applications. CRC press
  64. Pan, Y., Dai, M., Guo, Q., Yin, D., Zhuo, S., Hu, N., Yu, X., Hao, Y., & Huang, J. (2022). Multilayer wood/Cu-Fe3O4@Graphene/Ni composites for absorption-dominated electromagnetic shielding. Composite Interfaces, 29(6), 1-20.
  65. Peng, F., Meng, F., Guo, Y., Wang, H., Huang, F., & Zhou, Z. (2018). Intercalating Hybrids of Sandwich-like Fe3O4–Graphite: Synthesis and Their Synergistic Enhancement of Microwave Absorption. ACS Sustain. Chem. Eng. 6, 16744– 16753, DOI: 10.1021/acssuschemeng.8b04021
  66. Poplavko, Y. (2021). Dielectric spectroscopy of electronic materials: Applied Physics of dielectrics. Woodhead Publishing.
  67. Prokopchuk, A., Zozulia, I., Didenko, Y., Tatarchuk, D., Heuer, H., & Poplavko, Y. (2021). Dielectric permittivity model for polymer–filler composite materials by the example of Ni-and graphite-filled composites for high-frequency absorbing coatings. Coatings, 11(2), 172.
  68. Qiang, C., Xu, J., Zhang, Z., Tian, L., Xiao, S., Liu, Y., & Xu, P. (2010). Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. Journal of Alloys and Compounds, 506(1), 93-97.
  69. Qin, M., Zhang, L., & Wu, H. (2022). Dielectric loss mechanism in electromagnetic wave absorbing materials. Advanced Science, 9(10), 2105553.
  70. Qiu, X., Wang, L., Zhu, H., Guan, Y., & Zhang, Q. (2017). Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 9(22), 7408-7418.
  71. Ramo, S., Whinnery, J.R., & Van Duzer, T. ()1994). Fields and waves in communications electronics. JohnWiley and Son.
  72. Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-based, radar absorbing materials: A critical review. Journal of Science: Advanced Materials and Devices, 100454.
  73. Sabu, T., Kuruvilla, J., Malhotra, S. K., Goda, K., & Sreekala, M. K. (2012). Polymer Composites, Macro-and Microcomposites. Weinheim, Germany: John Wiley & Sons, 1, 356-358.
  74. Saini, P., Choudhary, V., Vijayan, N., & Kotnala, R. K. (2012). Improved electromagnetic interference shielding response of poly (aniline)-coated fabrics containing dielectric and magnetic nanoparticles. The Journal of Physical Chemistry C, 116(24), 13403-13412.
  75. Savi, P., Yasir, M., Bartoli, M., Giorcelli, M., & Longo, M. (2020). Electrical and microwave characterization of thermal annealed sewage sludge derived biochar composites. Applied Sciences, 10(4), 1334–1345.
  76. Shen, R., Weng, M., Zhang, L., Huang, J., & Sheng, X. (2022). Biomass-based carbon aerogel/Fe3O4@ PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Composites Part A: Applied Science and Manufacturing, 163, 107248.
  77. Singh, K., Ohlan, A., Pham, V.H., Balasubramaniyan, R., Varshney, S., Jang, J., Hur, S.H., Choi, W.M., Kumar, M., Dhawan, S.K., & Kong, B.S. (2013). Nanostructured graphene/Fe 3 O 4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale, 5(6), 2411-2420.
  78. Singh, R., & Bhateria, R. (2021). Core–shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 43, 2459-2482.
  79. Singhal, S. (2022). Biochar as a cost-effective and eco-friendly substitute for binder in concrete: a review. European Journal of Environmental and Civil Engineering, 1-26.
  80. Soares, B. G., Barra, G. M., & Indrusiak, T. (2021). Conducting polymeric composites based on intrinsically conducting polymers as electromagnetic interference shielding/microwave absorbing materials—A review. Journal of Composites Science, 5(7), 173.
  81. Sparavigna, A., Henn, A. R., & Florio, L. (2005). Textiles as electromagnetic shields for human and device safety. Applied Physics, Recent Res. Develop., 1-20.
  82. Sparavigna, A. C. (2022). Biochar for Shape Stabilized Phase-Change Materials . ChemRxiv. Cambridge: Cambridge Open Engage; 2022.
  83. Sparavigna A. C. (2023). Iron Oxide Fe3O4 Nanoparticles for Electromagnetic Shielding. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  84. Sparavigna, A. C. Iron Oxide Fe3O4 Nanoparticles with ICPs and Biochar to Improve Electromagnetic Shielding Performance (February 23, 2023). Available at SSRN: or
  85. Sparavigna, A. C. (2023). Multifunctional porosity in biochar. International Journal of Sciences, 12(07), 41-54. DOI: 10.18483/ijSci.2694
  86. Tong, S., Zhu, H., & Bao, G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. Materials Today, 31, 86-99.
  87. Torsello, D., Bartoli, M., Giorcelli, M., Rovere, M., Arrigo, R., Malucelli, G., Tagliaferro, A., & Ghigo, G. (2021). High frequency electromagnetic shielding by biochar-based composites. Nanomaterials, 11(9), p.2383.
  88. Wallyn, J., Anton, N., & Vandamme, T. F. (2019). Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications—A review. Pharmaceutics, 11(11), 601.
  89. Wang, B., Wei, J., Yang, Y., Wang, T., & Li, F. (2011). Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. Journal of Magnetism and Magnetic Materials, 323(8), 1101-1103.
  90. Wang, H., Meng, F., Li, J., Li, T., Chen, Z., Luo, H., & Zhou, Z. (2018). Carbonized design of hierarchical porous carbon/Fe3O4@ Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chemistry & Engineering, 6(9), 11801-11810.
  91. Wang, L., Guan, H., Hu, J., Huang, Q., Dong, C., Qian, W., & Wang, Y. (2019). Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. Journal of Alloys and Compounds, 803, 1119-1126.
  92. Wang, H., Zhang, Y., Wang, Q., Jia, C., Cai, P., Chen, G., Dong, C., & Guan, H. (2019). Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties. RSC advances, 9(16), 9126-9135.
  93. Wang, L., Li, X., Shi, X., Huang, M., Li, X., Zeng, Q., & Che, R. (2021). Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale, 13(4), 2136-2156.
  94. Wang, L., Guan, H., Su, S., Hu, J., & Wang, Y. (2022). Magnetic FeOX/biomass carbon composites with broadband microwave absorption properties. Journal of Alloys and Compounds, 903, 163894.
  95. Wang, Q., Wu, X., Huang, J., Chen, S., Zhang, Y., Dong, C., Chen, G., Wang, L., & Guan, H. (2022). Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. Journal of Alloys and Compounds, 890, 161887.
  96. Wang, L., Su, S., & Wang, Y. (2022). Fe3O4–Graphite Composites as a Microwave Absorber with Bimodal Microwave Absorption. ACS Applied Nano Materials, 5(12), 17565-17575.
  97. Wang, Y., Wan, S., Yu, W., Yuan, D., & Sun, L. (2022). The role of Fe3O4@ biochar as electron shuttle in enhancing the biodegradation of gaseous para-xylene by aerobic surfactant secreted strains. Journal of Hazardous Materials, 438, 129475.
  98. Wei, J., Liu, J., & Li, S. (2007). Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. Journal of magnetism and magnetic materials, 312(2), 414-417.
  99. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., & Deng, X. (2012). Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Engineering, 27, 632-637.
  100. Wen, F. S., Zhang, F., & Liu, Z. Y. (2011). Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers. J. Phys. Chem. C 2011, 115, 14025-14030.
  101. Wu, Z., Tan, D., Tian, K., Hu, W., Wang, J., Su, M., & Li, L. (2017). Facile preparation of core–shell Fe3O4@ Polypyrrole composites with superior electromagnetic wave absorption properties. The Journal of Physical Chemistry C, 121(29), 15784-15792.
  102. Wu, Z., Tian, K., Huang, T., Hu, W., Xie, F., Wang, J., Su, M., & Li, L. (2018). Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS applied materials & interfaces, 10(13), pp.11108-11115.
  103. Xu, F., Ma, L., Huo, Q., Gan, M., & Tang, J. (2015). Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. Journal of Magnetism and Magnetic Materials, 374, 311-316.
  104. Yang, H., Chao, W., Di, X., Yang, Z., Yang, T., Yu, Q., Liu, F., Li., J., Li, G. , & Wang, C. (2019). Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Conversion and Management, 200, 112029.
  105. Yan, F., Xue, G., Chen, J., & Lu, Y. (2001). Preparation of a conducting polymer/ferromagnet composite film by anodic-oxidation method. Synthetic metals, 123(1), 17-20.
  106. Yang, F., Hou, X., Wang, L., Li, Y., & Yu, M. (2020). Preparation of Ferrite Fe3O4 and Its Electromagnetic Wave Absorption Properties. In IOP Conference Series: Materials Science and Engineering (Vol. 772, No. 1, p. 012115). IOP Publishing.
  107. Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4@ graphene nanocomposite. Chemical engineering journal, 184, 326-332.
  108. Yasir, M., Di Summa, D., Ruscica, G., Natali Sora, I., & Savi, P. (2020). Shielding properties of cement composites filled with commercial biochar. Electronics, 9(5), 819.
  109. Yin, P., Zhang, L., Wang, J., Feng, X., Dai, J., & Tang, Y. (2021). Facile preparation of cotton-derived carbon fibers loaded with hollow Fe3O4 and CoFe NPs for significant low-frequency electromagnetic absorption. Powder Technology, 380, 134-142.
  110. Yin, P., Zhang, L., Jiang, Y., Zhang, Y., Wang, J., Feng, X., Dai, J., & Tang, Y. (2020). Recycling of waste straw in sorghum for preparation of biochar/(Fe, Ni) hybrid aimed at significant electromagnetic absorbing of low-frequency band. Journal of Materials Research and Technology, 9(6), 14212-14222.
  111. Yörük, A. E., Erdoğan, M. K., Karakışla, M., & Saçak, M. (2021). Deposition of electrically-conductive polyaniline/ferrite nanoparticles onto the polypropylene nonwoven for the development of an electromagnetic interference shield material. The Journal of The Textile Institute, 1-13.
  112. Yusoff, A. N., Abdullah, M. H., Ahmad, S. H., Jusoh, S. F., Mansor, A. A., & Hamid, S. A. A. (2002). Electromagnetic and absorption properties of some microwave absorbers. Journal of Applied Physics, 92(2), 876-882.
  113. Zhao, H., Cheng, Y., Liu, W., Yang, L., Zhang, B., Wang, L.P., Ji, G., & Xu, Z.J. (2019). Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Letters, 11(1), 1-17.
  114. Zheng, X., Tang, J., Cheng, L., Yang, H., Zou, L., & Li, C. (2023). Superhydrophobic hollow magnetized Fe3O4 nanospheres/MXene fabrics for electromagnetic interference shielding. Journal of Alloys and Compounds, 934, 167964.
  115. Zhou, X., Jia, Z., Feng, A., Wang, X., Liu, J., Zhang, M., Cao, H., & Wu, G. (2019). Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon, 152, 827-836.
  116. Ziegler, D., Francia, E. D., Savi, P., & Tulliani, J. M. (2020). Biochar addition to inorganic binders. In Biochar: Emerging applications (pp. 11-1). Bristol, UK: IOP Publishing.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper