Convolution and Fourier Transform: from Gaussian and Lorentzian Functions to q-Gaussian Tsallis Functions

Convolution and Fourier Transform: from Gaussian and Lorentzian Functions to q-Gaussian Tsallis Functions

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2732 12 39 7-11 Volume 12 - Nov 2023


A discussion is here proposed regarding the Voigt function, that is the convolution of Gaussian and Lorentzian functions, and the Lévy and q-Gaussian Tsallis distributions. The Voigt and q-Gaussian functions can be used as line shapes in Raman spectroscopy for fitting spectra. Using the convolution theorem, we can obtain the relaxations which are producing the Voigt line shape. To determine the relaxation governing the q-Gaussian line shape, we need to use the Lévy symmetric distribution, since the direct Fourier transform of the q-Gaussian is a very complicated function. According to the work by Deng, 2010, the q-Gaussian functions are mimicking the Lévy functions in an excellent manner. Being the Fourier transform of the Lévy function a stretched exponential relaxation, we can argue that the same mechanism is producing the q-Gaussian line shape. Moreover, using the convolution theorem for the q-Gaussians, we can further generalize the relaxation mechanism.


Tsallis q-Gaussian Distribution, Voigt Distribution, pseudo-Voigt Distribution, Lévy Distribution, Convolution Theorem


  1. Cope, D., & Lovett, R. J. (1987). A general expression for the Voigt profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 37(4), 377-389.
  2. Deng, J. (2010, June). Relationship between Lévy Distribution and Tsallis Distribution. In ICEIS (2) (pp. 360-367).
  3. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  4. Hristov, J. (2023). Non-local kinetics: Revisiting and updates emphasizing fractional calculus applications. Symmetry, 15(3), 632.
  5. Kirillov, S. A. (2004). Novel approaches in spectroscopy of interparticle interactions. Raman line profiles and dynamics in liquids and glasses. Journal of molecular liquids, 110(1-3), 99-103.
  6. Kirillov, S. (2004). Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227
  7. Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
  8. Mendenhall, M. H. (2007). Fast computation of Voigt functions via Fourier transforms. Journal of Quantitative Spectroscopy and Radiative Transfer, 105(3), 519-524.
  9. Merlen, A., Buijnsters, J. G., & Pardanaud, C. (2017). A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings, 7(10), 153.
  10. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  11. Phillips, J. C. (1996). Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 59(9), 1133.
  12. Rautian, S. G. (1958). Real spectral apparatus. Soviet Physics Uspekhi, 1(2), 245.
  13. Richter, H., Wang, Z. P., & Ley, L. (1981). The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39(5), 625-629.
  14. Rodrigues, P. S. S., & Giraldi, G. A. (2016). Fourier analysis and q-gaussian functions: Analytical and numerical results. arXiv preprint arXiv:1605.00452.
  15. Schreier, F. (1992). The Voigt and complex error function: A comparison of computational methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 48(5-6), 743-762.
  16. Seshadri, K., & Jones, R. N. (1963). The shapes and intensities of infrared absorption bands—A review. Spectrochimica Acta, 19(6), 1013-1085
  17. Tatum, J. (2022). Combination of Profiles. (2022, March 5). University of Victoria.
  18. Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
  19. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40.
  20. Sparavigna, A. C. (2023). q-Gaussian Tsallis Functions and Egelstaff-Schofield Spectral Line Shapes. International Journal of Sciences, 12(03), 47-50.
  21. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal.
  22. Sparavigna, A. C. (2023). Formamide Raman Spectrum and q-Gaussian Tsallis Lines (June 12, 2023). SSRN Electronic Journal.
  23. Sparavigna, A. C. (2023). Tsallis and Kaniadakis Gaussian functions, applied to the analysis of Diamond Raman spectrum, and compared with Pseudo-Voigt functions. Zenodo.
  24. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  25. Sparavigna A. C. (2003). Fitting q-Gaussians onto Anatase TiO2 Raman Bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  26. Sparavigna, A. C. (2023). q-Gaussians and the SERS Spectral Bands of L-Cysteine and Cysteamine. ChemRxiv. doi:10.26434/chemrxiv-2023-9swp9-v2
  27. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14–24.
  28. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions to fit the Raman LO mode band in Silicon Carbide. ChemRxiv. Cambridge Open Engage; 2023.
  29. Sparavigna, A. C. (2023). Generalizing asymmetric and pseudo-Voigt functions by means of q-Gaussian Tsallis functions to analyze the wings of Raman spectral bands. ChemRxiv, Cambridge Open Engage, 2023.
  30. Stoneham, A. M. (1966). The theory of the strain broadened line shapes of spin resonance and optical zero phonon lines. Proceedings of the Physical Society, 89(4), 909.
  31. Stoneham, A. M. (1969). Shapes of inhomogeneously broadened resonance lines in solids. Reviews of Modern Physics, 41(1), 82.
  32. Stoneham, A. M. (1972). Linewidths with gaussian and lorentzian broadening. Journal of Physics D: Applied Physics, 5(3), 670.
  33. Svelto, O. (1970). Principi dei laser. Tamburini editore.
  34. Townsend, R. (2008). Astronomy 310, Stellar Astrophysics, Fall Semester 2008, Lecture Notes,
  35. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  36. Tsallis, C. (1995). Some comments on Boltzmann-Gibbs statistical mechanics. Chaos, Solitons & Fractals, 6, 539-559.
  37. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  38. Van Vleck, J. H. (1948). The dipolar broadening of magnetic resonance lines in crystals. Physical Review, 74(9), 1168.
  39. Vogman, G. (2010). Deconvolution of spectral Voigt profiles using inverse methods and Fourier transforms. Department of Mathematics, University of Washington.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper