The Fitted q-Gaussian Function, from Voigt Profile to Kubo Lineshape

The Fitted q-Gaussian Function, from Voigt Profile to Kubo Lineshape

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2750 8 9 1-16 Volume 13 - Mar 2024


Several previously discussed cases have shown that the q-Gaussian Tsallis functions can be used for fitting the bands of Raman spectra. Here, considering an article by Thibault et al., 2002, we can add the case of the Raman Q branch of carbon monoxide, for mixtures with Argon at different temperatures. In Thibault et al., a plot is available for the Q(5) line with a fitted Voigt function. A q-Gaussian Tsallis function can be used for fitting this line too. We will note that the fitted q-Gaussian has the wings which are not Lorentzian. At the same time, the wings are not Gaussian. Besides the use of q-Gaussians, a discussion will be proposed about the time correlation functions related to different line shapes (q-Gaussian, Egelstaff-Schofield, Kubo, BWF, Voigt, speed-dependent Voigt, Galatry, Rautian, HTP). Some of these line shapes have been proposed for the high-resolution spectroscopy of gases; however, their knowledge can be relevant also for the condensed matter spectroscopy.


Raman Spectroscopy, q-Gaussian Tsallis Lines, Time Correlation Functions, WolframAlpha


  1. Abousahl, S., Gourma, M., & Bickel, M. (1997). Fast Fourier transform for Voigt profile: comparison with some other algorithms. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 395(2), 231-236.
  2. Adkins, E. M., & Hodges, J. T. (2022). Assessment of the precision, bias and numerical correlation of fitted parameters obtained by multi-spectrum fits of the Hartmann-Tran line profile to simulated absorption spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 280, 108100.
  3. Basu, S. K. (Ed.). (2007). Encyclopedic Dictionary of Astrophysics. Global Vision Pub House.
  4. Boone, C. D., Walker, K. A., & Bernath, P. F. (2007). Speed-dependent Voigt profile for water vapor in infrared remote sensing applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 105(3), 525-532.
  5. Burke, B. F., Graham-Smith, F., & Wilkinson, P. N. (2019). An introduction to radio astronomy. Cambridge University Press.
  6. Cope, D., & Lovett, R. J. (1987). A general expression for the Voigt profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 37(4), 377-389.
  7. Demtröder, W. (1982). Laser spectroscopy. Berlin, Heidelberg: Springer.
  8. Dicke, R. H. (1953). The effect of collisions upon the Doppler width of spectral lines. Physical Review, 89(2), 472.
  9. Dore, L. (2003). Using Fast Fourier Transform to compute the line shape of frequency-modulated spectral profiles. Journal of Molecular Spectroscopy, 221(1), 93-98.
  10. Egelstaff, P. A., & Schofield, P. (1962). On the evaluation of the thermal neutron scattering law. Nuclear Science and Engineering, 12(2), 260-270
  11. Farvardin, N., & Modestino, J. W. (1984). Optimum quantizer performance for a class of non-Gaussian memoryless sources, IEEE Trans. Inf. Theory, vol. IT-30, no. 3, pp. 485-497, May 1984.
  12. Feng, Q., & Wilde, R. E. (1988). Vibrational dephasing in aqueous KSCN solution. A memory function and stretched exponential study. Chemical physics letters, 150(6), 424-428.
  13. Forthomme, D., Cich, M. J., Twagirayezu, S., Hall, G. E., & Sears, T. J. (2015). Application of the Hartmann–Tran profile to precise experimental data sets of 12C2H2. Journal of Quantitative Spectroscopy and Radiative Transfer, 165, 28-37.
  14. Galatry, L. (1961). Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Physical Review, 122(4), 1218.
  15. Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y., & Wcisło, P. (2022). The HITRAN2020 molecular spectroscopic database. Journal of quantitative spectroscopy and radiative transfer, 277, p.107949.
  16. Hall, C. K., & Helfand, E. (1982). Conformational state relaxation in polymers: Time‐correlation functions. The Journal of Chemical Physics, 77(6), 3275-3282.
  17. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  18. Hanson, R. K. (2018). Quantitative laser diagnostics for combustion chemistry and propulsion. Archive .
  19. Hartmann, J. M., Boulet, C., & Robert, D. (2008). Collisional effects on molecular spectra: Laboratory experiments and models, consequences for applications, Elsevier: Amsterdam, 2008.
  20. Ivanov, S. V., Semenov, V. M., Nabiev, S. S., & Ponurovskii, Y. (2014). Diode laser measurements of the first overtone HF lineshape broadened by Ar, Xe, Kr and N2. Applied Physics B, 117, 423-435.
  21. Kirillov, S. A. (1993). Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach. Chemical physics letters, 202(6), 459-463.
  22. Kirillov, S. A. (1999). Time-correlation functions from band-shape fits without Fourier transform. Chemical physics letters, 303(1-2), 37-42.
  23. Kirillov, S. A. (2004). Novel approaches in spectroscopy of interparticle interactions. Raman line profiles and dynamics in liquids and glasses. Journal of molecular liquids, 110(1-3), 99-103.
  24. Kirillov, S. (2004). Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227
  25. Kotz, S., Kozubowski, T., & Podgórski, K. (2001). The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance (No. 183). Springer Science & Business Media. See also 4.4.3 in Kotz et al.
  26. Kubo, R. (1969). A stochastic theory of line shape. Advances in chemical physics, 15, 101-127
  27. Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
  28. Mendenhall, M. H. (2007). Fast computation of Voigt functions via Fourier transforms. Journal of Quantitative Spectroscopy and Radiative Transfer, 105(3), 519-524.
  29. Merlen, A., Buijnsters, J. G., & Pardanaud, C. (2017). A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings, 7(10), 153.
  30. Misochko, O. V., & Lebedev, M. V. (2015). Fano interference at the excitation of coherent phonons: Relation between the asymmetry parameter and the initial phase of coherent oscillations. Journal of Experimental and Theoretical Physics, 120, 651-663.
  31. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  32. Ngo, N. H., Lisak, D., Tran, H., & Hartmann, J. M. (2013). An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 129, 89-100.
  33. Rautian, S. G. (1958). Real spectral apparatus. Soviet Physics Uspekhi, 1(2), 245.
  34. Rautian, S. G., & Sobel'man, I. I. (1967). The effect of collisions on the Doppler broadening of spectral lines. Soviet Physics Uspekhi, 9(5), 701.
  35. Richter, H., Wang, Z. P., & Ley, L. (1981). The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39(5), 625-629.
  36. Rodrigues, P. S., & Giraldi, G. A. (2015). Theoretical Elements in Fourier Analysis of q-Gaussian Functions. Theoretical and Applied Informatics, 16-44.
  37. Rohart, F., Colmont, J. M., Wlodarczak, G., & Bouanich, J. P. (2003). N2-and O2-broadening coefficients and profiles for millimeter lines of 14N2O. Journal of Molecular Spectroscopy, 222(2), 159-171.
  38. Rohart, F., Wlodarczak, G., Colmont, J. M., Cazzoli, G., Dore, L., & Puzzarini, C. (2008). Galatry versus speed-dependent Voigt profiles for millimeter lines of O3 in collision with N2 and O2. Journal of Molecular Spectroscopy, 251(1-2), 282-292.
  39. Rothschild, W. G., Perrot, M., & Guillaume, F. (1987). On the vibrational T 2 processes in partially ordered systems. The Journal of chemical physics, 87(12), 7293-7299.
  40. Schreier, F. (1992). The Voigt and complex error function: A comparison of computational methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 48(5-6), 743-762.
  41. Seshadri, K., & Jones, R. N. (1963). The shapes and intensities of infrared absorption bands—A review. Spectrochimica Acta, 19(6), 1013-1085
  42. Silva Jr, R., Plastino, A. R., & Lima, J. A. S. (1998). A Maxwellian path to the q-nonextensive velocity distribution function. Physics Letters A, 249(5-6), 401-408.
  43. Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
  44. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40.
  45. Sparavigna, A. C. (2023). q-Gaussian Tsallis Functions and Egelstaff-Schofield Spectral Line Shapes. International Journal of Sciences, 12(03), 47-50.
  46. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal.
  47. Sparavigna, A. C. (2023). Tsallis and Kaniadakis Gaussian functions, applied to the analysis of Diamond Raman spectrum, and compared with Pseudo-Voigt functions. Zenodo.
  48. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  49. Sparavigna A. C. (2003). Fitting q-Gaussians onto Anatase TiO2 Raman Bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  50. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14–24.
  51. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions to fit the Raman LO mode band in Silicon Carbide. ChemRxiv. Cambridge Open Engage; 2023.
  52. Sparavigna, A. C. (2023). Generalizing asymmetric and pseudo-Voigt functions by means of q-Gaussian Tsallis functions to analyze the wings of Raman spectral bands. ChemRxiv, Cambridge Open Engage, 2023.
  53. Sparavigna, A. C. (2023). Convolution and Fourier Transform: from Gaussian and Lorentzian Functions to q-Gaussian Tsallis Functions. International Journal of Sciences, 12(11), 7-11.
  54. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9.
  55. Stoneham, A. M. (1966). The theory of the strain broadened line shapes of spin resonance and optical zero phonon lines. Proceedings of the Physical Society, 89(4), 909.
  56. Stoneham, A. M. (1969). Shapes of inhomogeneously broadened resonance lines in solids. Reviews of Modern Physics, 41(1), 82.
  57. Stoneham, A. M. (1972). Linewidths with gaussian and lorentzian broadening. Journal of Physics D: Applied Physics, 5(3), 670.
  58. Svelto, O. (1970). Principi dei laser. Tamburini editore.
  59. Tagliaferro, A., Rovere, M., Padovano, E., Bartoli, M., & Giorcelli, M. (2020). Introducing the novel mixed gaussian-lorentzian lineshape in the analysis of the raman signal of biochar. Nanomaterials, 10(9), 1748.
  60. Tatum, J. (2022). Combination of Profiles. (2022, March 5). University of Victoria.
  61. Tennyson, Jonathan, Bernath, Peter F., Campargue, Alain, Császár, Attila G., Daumont, Ludovic, Gamache, Robert R., Hodges, Joseph T., Lisak, Daniel, Naumenko, Olga V., Rothman, Laurence S., Tran, Ha, Zobov, Nikolai F., Buldyreva, Jeanna, Boone, Chris D., De Vizia, Maria Domenica, Gianfrani, Livio, Hartmann, Jean-Michel, McPheat, Robert, Weidmann, Damien, Murray, Jonathan, Ngo, Ngoc Hoa and Polyansky, Oleg L.. "Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)" Pure and Applied Chemistry, vol. 86, no. 12, 2014, pp. 1931-1943.
  62. Thibault, F., Martinez, R. Z., Domenech, J. L., Bermejo, D., & Bouanich, J. P. (2002). Raman and infrared linewidths of CO in Ar. The Journal of chemical physics, 117(6), 2523-2531.
  63. Tokmakoff, A. (2009). MIT Dept. of Chemistry, Lecture Notes, Archive
  64. Townsend, R. (2008). Astronomy 310, Stellar Astrophysics, Fall Semester 2008, Lecture Notes, Archive
  65. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  66. Tsallis, C. (1995). Some comments on Boltzmann-Gibbs statistical mechanics. Chaos, Solitons & Fractals, 6, 539-559.
  67. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328.
  68. Yin, C., & Dong, H. (2023). The Bessel function expression of characteristic function. Communications in Statistics-Theory and Methods, 1-17.
  69. Van Vleck, J. H. (1948). The dipolar broadening of magnetic resonance lines in crystals. Physical Review, 74(9), 1168.
  70. Vogman, G. (2010). Deconvolution of spectral Voigt profiles using inverse methods and Fourier transforms. Department of Mathematics, University of Washington.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper