Water, q-Gaussians and Raman Spectroscopy

Water, q-Gaussians and Raman Spectroscopy

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2751 9 27 17-25 Volume 13 - Mar 2024

Abstract

A large literature exists about the Raman spectroscopy of water. Here we present some articles regarding the spectral region between 2800 and 3800 cm−1, that is the O-H stretching Raman band, and the proposed decomposition obtained by means of Gaussian profiles. We will also approach the decomposition of this region with three q-Gaussian functions, instead of the five Gaussians usually considered. Being the q-parameter of q-Gaussians related to the correlation time of stochastic Kubo modelling of fluctuations, we propose the use of this parameter to characterize the local environments of O-H bonds.

Keywords

Raman Spectroscopy, Q-Gaussian Tsallis Lines, Hydrogen Bonds, O-H Stretching Band

References

  1. Baschenko, S. M., & Marchenko, L. S. (2011). On Raman spectra of water, its structure and dependence on temperature. Semiconductor physics, quantum electronics & optoelectronics, 14(1), 77-79.
  2. Benson, S. W., & Siebert, E. D. (1992). A simple two-structure model for liquid water. Journal of the American Chemical Society, 114(11), 4269-4276.
  3. Brewer, P. G., Peltzer, E. T., & Walz, P. M. (2019). How much H2O is there in the ocean? The structure of water in sea water. Journal of Geophysical Research: Oceans, 124(1), 212-226.
  4. Carey, D. M., & Korenowski, G. M. (1998). Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics, 108(7), 2669–2675. https://doi.org/10.1063/1.475659
  5. D’Arrigo, G., Maisano, G., Mallamace, F., Migliardo, P., & Wanderlingh, F. (1981). Raman scattering and structure of normal and supercooled water. The journal of chemical physics, 75(9), 4264-4270.
  6. Đuričković, I., Claverie, R., Bourson, P., Marchetti, M., Chassot, J. M., & Fontana, M. D. (2011). Water–ice phase transition probed by Raman spectroscopy. Journal of Raman Spectroscopy, 42(6), 1408-1412.
  7. Faurskov Nielsen, Ole (2001). Low-frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison between different low-frequency experimental Techniques. Collectivity of Vibrational modes. In Lewis, I. R., & Edwards, H. (2001). Handbook of Raman spectroscopy: from the research laboratory to the process line. CRC press.
  8. Furić, K., Ciglenečki, I., & Ćosović, B. (2000). Raman spectroscopic study of sodium chloride water solutions. Journal of Molecular Structure, 550, 225-234.
  9. Georgiev, G. M., Kalkanjiev, T. K., Petrov, V. P., Nickolov, Z., & Miteva, M. (1983). Concentration-dependence studies of Raman spectra of water by the method of self-deconvolution. Chemical physics letters, 103(1), 83-88.
  10. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  11. Hare, D. E., & Sorensen, C. M. (1992). Interoscillator coupling effects on the OH stretching band of liquid water. The Journal of chemical physics, 96(1), 13-22.
  12. Hu, Q., Lü, X., Lu, W., Chen, Y., & Liu, H. (2013). An extensive study on Raman spectra of water from 253 to 753 K at 30 MPa: A new insight into structure of water. Journal of Molecular Spectroscopy, 292, 23-27.
  13. ‘Isosbestic point' in IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry; 2006. Online version 3.0.1, 2019. https://doi.org/10.1351/goldbook.I03310
  14. Keutsch, F. N., & Saykally, R. J. (2001). Water clusters: Untangling the mysteries of the liquid, one molecule at a time. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10,533–10,540. https://doi.org/10.1073/pnas.191266498
  15. Li, R., Jiang, Z., Shi, S., & Yang, H. (2003). Raman spectra and 17O NMR study effects of CaCl2 and MgCl2 on water structure. Journal of Molecular Structure, 645(1), 69-75.
  16. Li, R., Jiang, Z., Chen, F., Yang, H., & Guan, Y. (2004). Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. Journal of molecular structure, 707(1-3), 83-88.
  17. Long, D. A. (2002). The Raman effect. John Wiley & Sons Ltd.
  18. Ludwig, R. (2001). Water: From clusters to the bulk. Angewandte Chemie International Edition, 40(10), 1808-1827.
  19. Maeda, Y., & Kitano, H. (1995). The structure of water in polymer systems as revealed by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(14), 2433-2446.
  20. Malfait, B., Moréac, A., Jani, A., Lefort, R., Huber, P., Fröba, M., & Morineau, D. (2022). Structure of water at hydrophilic and hydrophobic interfaces: Raman spectroscopy of water confined in periodic mesoporous (organo) silicas. The Journal of Physical Chemistry C, 126(7), 3520-3531.
  21. Scherer, J. R., Go, M. K., & Kint, S. (1974). Raman spectra and structure of water from-10 to 90. deg. The Journal of Physical Chemistry, 78(13), 1304-1313.
  22. Smith, J. D., Cappa, C. D., Wilson, K. R., Cohen, R. C., Geissler, P. L., & Saykally, R. J. (2005). Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proceedings of the National Academy of Sciences of the United States of America, 40, 14,171–14,174.
  23. Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
  24. Sparavigna, A. C. (2023). Role of Lyotropic Liquid Crystals in Templating Mesosilica Materials. International Journal of Sciences, 12(07), 7-40.
  25. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40.
  26. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  27. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  28. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14–24. https://doi.org/10.18483/ijsci.2721
  29. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9.
  30. Sun, Q. (2009). The Raman OH stretching bands of liquid water. Vibrational Spectroscopy, 51(2), 213-217.
  31. Sun, Q. (2010). The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy. The Journal of chemical physics, 132(5).
  32. Tokmakoff, A. (2014) Time-Dependent Quantum Mechanics and Spectroscopy. Univ. Chicago. http://tdqms.uchicago.edu/
  33. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  34. Tsallis, C. (1995). Some comments on Boltzmann-Gibbs statistical mechanics. Chaos, Solitons & Fractals, 6, 539-559.
  35. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328.
  36. Walrafen, G. E. (1964). Raman spectral studies of water structure. The Journal of Chemical Physics, 40(11), 3249–3256. https://doi.org/10.1063/1.1724992
  37. Walrafen, G. E. (1967). Raman spectral studies of the effects of temperature on water structure. The Journal of Chemical Physics, 47(1), 114–126. https://doi.org/10.1063/1.1711834
  38. Walrafen, G. E. (1968). Raman spectral studies of HDO in H2O. The Journal of Chemical Physics, 48(1), 244-251.
  39. Walrafen, G. E., Hokmadabi, M. S., & Yang, W.-H. (1986). Raman isosbestic points from liquid water. The Journal of Chemical Physics, 85(12), 6964–6969. https://doi.org/10.1063/1.451383
  40. Zhelyaskov, V., Georgiev, G., Nickolov, Z., & Miteva, M. (1989). Concentration (D2O in H2O) and temperature Raman study of the molecular interactions in the OD stretching spectra of D2O and D2O/H2O mixtures using the fourier deconvolution technique. Journal of Raman spectroscopy, 20(2), 67-75.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper