Applying q-Gaussians to the OH-stretching Raman bands of Water and Ice

Applying q-Gaussians to the OH-stretching Raman bands of Water and Ice

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2756 6 7 1-10 Volume 13 - Apr 2024

Abstract

In a previous discussion, we started showing how the q-Gaussian functions, also known as Tsallis functions, can be applied to the Raman spectroscopy investigations of the spectral region between 2800 and 3800 cm−1, that is the OH-stretching Raman band of water. We decomposed the spectral region in three q-Gaussians. Being the q-parameter of q-Gaussians related to the correlation time of stochastic Kubo modelling of fluctuations, we proposed the use of this parameter to characterize the local environments of OH bonds. Here, we further discuss the OH-stretching Raman band of water and consider the same spectral region in the case of ice, to understand how the decomposition in q-Gaussians changes in the number of components and values of q-parameters.

Keywords

Raman Spectroscopy, q-Gaussian Tsallis Lines, Hydrogen Bonds, OH Stretching Band, Kubo Stochastic Model of Fluctuations

References

  1. Auer, B. M., & Skinner, J. L. (2008). IR and Raman spectra of liquid water: Theory and interpretation. The Journal of Chemical Physics, 128(22).
  2. Baschenko, S. M., & Marchenko, L. S. (2011). On Raman spectra of water, its structure and dependence on temperature. Semiconductor physics, quantum electronics & optoelectronics, 14(1), 77-79.
  3. Baumgartner, M., & Bakker, R. J. (2009). Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—a study of polarization effects. Mineralogy and Petrology, 95(1), 1-15.
  4. Becucci, M., Cavalieri, S., Eramo, R., Fini, L., & Materazzi, M. (1999). Accuracy of remote sensing of water temperature by Raman spectroscopy. Applied optics, 38(6), 928-931.
  5. Benson, S. W., & Siebert, E. D. (1992). A simple two-structure model for liquid water. Journal of the American Chemical Society, 114(11), 4269-4276.
  6. Brewer, P. G., Peltzer, E. T., & Walz, P. M. (2019). How much H2O is there in the ocean? The structure of water in sea water. Journal of Geophysical Research: Oceans, 124(1), 212-226.
  7. Buch, V., & Devlin, J. P. (1999). A new interpretation of the OH-stretch spectrum of ice. The Journal of chemical physics, 110(7), 3437-3443.
  8. Bunkin, A. F., Pershin, S. M., & Rashkovich, L. N. (2004). Changes in the Raman spectrum of OH stretching vibrations of water in an ultrasonic cavitation field. Optics and spectroscopy, 96, 512-514.
  9. Carey, D. M. (1996). Measurement of the Raman Spectrum of Liquid Water. United States. doi:10.2172/767069. https://www.osti.gov/servlets/purl/767069
  10. Carey, D. M., & Korenowski, G. M. (1998). Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics, 108(7), 2669–2675. https://doi.org/10.1063/1.475659
  11. Choi, J. H., & Cho, M. (2013). Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants. The Journal of Chemical Physics, 138(17).
  12. Chumaevskii, N. A., Rodnikova, M. N., & Sirotkin, D. A. (2001). Cationic effect in agueous solutions of 1: 1 electrolytes by Raman spectral data. Journal of Molecular Liquids, 91(1-3), 81-90.
  13. D’Arrigo, G., Maisano, G., Mallamace, F., Migliardo, P., & Wanderlingh, F. (1981). Raman scattering and structure of normal and supercooled water. The journal of chemical physics, 75(9), 4264-4270.
  14. De Marco, L., Carpenter, W., Liu, H., Biswas, R., Bowman, J. M., & Tokmakoff, A. (2016). Differences in the vibrational dynamics of H2O and D2O: observation of symmetric and antisymmetric stretching vibrations in heavy water. The Journal of Physical Chemistry Letters, 7(10), 1769-1774.
  15. Đuričković, I., Claverie, R., Bourson, P., Marchetti, M., Chassot, J. M., & Fontana, M. D. (2011). Water–ice phase transition probed by Raman spectroscopy. Journal of Raman Spectroscopy, 42(6), 1408-1412.
  16. Faurskov Nielsen, Ole (2001). Low-frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison between different low-frequency experimental Techniques. Collectivity of Vibrational modes. In Lewis, I. R., & Edwards, H. (2001). Handbook of Raman spectroscopy: from the research laboratory to the process line. CRC press.
  17. Furić, K., Ciglenečki, I., & Ćosović, B. (2000). Raman spectroscopic study of sodium chloride water solutions. Journal of Molecular Structure, 550, 225-234.
  18. Georgiev, G. M., Kalkanjiev, T. K., Petrov, V. P., Nickolov, Z., & Miteva, M. (1983). Concentration-dependence studies of Raman spectra of water by the method of self-deconvolution. Chemical physics letters, 103(1), 83-88.
  19. Gopalakrishnan, S., Jungwirth, P., Tobias, D. J., & Allen, H. C. (2005). Air− liquid interfaces of aqueous solutions containing ammonium and sulfate: Spectroscopic and molecular dynamics studies. The Journal of Physical Chemistry B, 109(18), 8861-8872.
  20. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  21. Hare, D. E., & Sorensen, C. M. (1992). Interoscillator coupling effects on the OH stretching band of liquid water. The Journal of chemical physics, 96(1), 13-22.
  22. Hu, Q., Lü, X., Lu, W., Chen, Y., & Liu, H. (2013). An extensive study on Raman spectra of water from 253 to 753 K at 30 MPa: A new insight into structure of water. Journal of Molecular Spectroscopy, 292, 23-27.
  23. ‘Isosbestic point' in IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry; 2006. Online version 3.0.1, 2019. https://doi.org/10.1351/goldbook.I03310
  24. Jansen, T. L. C., Hayashi, T., Zhuang, W., & Mukamel, S. (2005). Stochastic Liouville equations for hydrogen-bonding fluctuations and their signatures in two-dimensional vibrational spectroscopy of water. The Journal of chemical physics, 123(11).
  25. Kargovsky, A. V. (2006). On temperature dependence of the valence band in the Raman spectrum of liquid water. Laser Physics Letters, 3(12), 567.
  26. Keutsch, F. N., & Saykally, R. J. (2001). Water clusters: Untangling the mysteries of the liquid, one molecule at a time. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10,533–10,540. https://doi.org/10.1073/pnas.191266498
  27. Kubo, R. (1969). A stochastic theory of line shape. Advances in chemical physics, 15, 101-127.
  28. Li, R., Jiang, Z., Shi, S., & Yang, H. (2003). Raman spectra and 17O NMR study effects of CaCl2 and MgCl2 on water structure. Journal of Molecular Structure, 645(1), 69-75.
  29. Li, R., Jiang, Z., Chen, F., Yang, H., & Guan, Y. (2004). Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. Journal of molecular structure, 707(1-3), 83-88.
  30. Long, D. A. (2002). The Raman effect. John Wiley & Sons Ltd.
  31. Ludwig, R. (2001). Water: From clusters to the bulk. Angewandte Chemie International Edition, 40(10), 1808-1827.
  32. Maeda, Y., & Kitano, H. (1995). The structure of water in polymer systems as revealed by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(14), 2433-2446.
  33. Malfait, B., Moréac, A., Jani, A., Lefort, R., Huber, P., Fröba, M., & Morineau, D. (2022). Structure of water at hydrophilic and hydrophobic interfaces: Raman spectroscopy of water confined in periodic mesoporous (organo) silicas. The Journal of Physical Chemistry C, 126(7), 3520-3531.
  34. Monosmith, W. B., & Walrafen, G. E. (1984). Temperature dependence of the Raman OH‐stretching overtone from liquid water. The Journal of chemical physics, 81(2), 669-674.
  35. Paarmann, A., Hayashi, T., Mukamel, S., & Miller, R. J. D. (2008). Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy. The Journal of chemical physics, 128(19).
  36. Pershin, S. M., Lednev, V. N., Yulmetov, R. N., Klinkov, V. K., & Bunkin, A. F. (2015). Transparent material thickness measurements by Raman scattering. Applied Optics, 54(19), 5943-5948.
  37. Porezag, D., & Pederson, M. R. (1996). Infrared intensities and Raman-scattering activities within density-functional theory. Physical Review B, 54(11), 7830.
  38. Rull, F. (2002). Structural investigation of water and aqueous solutions by Raman spectroscopy. Pure and applied chemistry, 74(10), 1859-1870.
  39. Sceats, M. G., Stavola, M., & Rice, S. A. (1979). On the role of Fermi resonance in the spectrum of water in its condensed phases. The Journal of Chemical Physics, 71(2), 983-990.
  40. Scherer, J. R., Go, M. K., & Kint, S. (1973). Raman spectra and structure of water in dimethyl sulfoxide. The Journal of Physical Chemistry, 77(17), 2108-2117.
  41. Scherer, J. R., Go, M. K., & Kint, S. (1974). Raman spectra and structure of water from-10 to 90. deg. The Journal of Physical Chemistry, 78(13), 1304-1313.
  42. Schmidt, D. A., & Miki, K. (2007). Structural correlations in liquid water: a new interpretation of IR spectroscopy. The journal of physical chemistry A, 111(40), 10119-10122.
  43. Skinner, J. L., Auer, B. M., & Lin, Y. S. (2009). Vibrational line shapes, spectral diffusion, and hydrogen bonding in liquid water. Advances in Chemical Physics, 142, 59.
  44. Smith, J. D., Cappa, C. D., Wilson, K. R., Cohen, R. C., Geissler, P. L., & Saykally, R. J. (2005). Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proceedings of the National Academy of Sciences of the United States of America, 40, 14,171–14,174.
  45. Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
  46. Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
  47. Sparavigna, A. C. (2023). Role of Lyotropic Liquid Crystals in Templating Mesosilica Materials. International Journal of Sciences, 12(07), 7-40.
  48. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40.
  49. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  50. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  51. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14–24. https://doi.org/10.18483/ijsci.2721
  52. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9.
  53. Sparavigna, A. C. (2024). Water, q-Gaussians and Raman Spectroscopy, International Journal of Sciences 03:17-25 DOI: 10.18483/ijSci.2751
  54. Sun, Q. (2009). The Raman OH stretching bands of liquid water. Vibrational Spectroscopy, 51(2), 213-217.
  55. Sun, Q. (2010). The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy. The Journal of chemical physics, 132(5).
  56. Tokmakoff, A. (2014) Time-Dependent Quantum Mechanics and Spectroscopy. Univ. Chicago. /http://tdqms.uchicago.edu/
  57. Torii, H. (2006). Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water. The Journal of Physical Chemistry A, 110(30), 9469-9477.
  58. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  59. Tsallis, C. (1995). Some comments on Boltzmann-Gibbs statistical mechanics. Chaos, Solitons & Fractals, 6, 539-559.
  60. Tukhvatullin, F. H., Pogorelov, V. Y., Jumabaev, A., Hushvaktov, H. A., Absanov, A. A., & Usarov, A. (2011). Polarized components of Raman spectra of O–H vibrations in liquid water. Journal of Molecular liquids, 160(2), 88-93.
  61. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328.
  62. Walrafen, G. E. (1964). Raman spectral studies of water structure. The Journal of Chemical Physics, 40(11), 3249–3256. https://doi.org/10.1063/1.1724992
  63. Walrafen, G. E. (1967). Raman spectral studies of the effects of temperature on water structure. The Journal of Chemical Physics, 47(1), 114–126. https://doi.org/10.1063/1.1711834
  64. Walrafen, G. E. (1968). Raman spectral studies of HDO in H2O. The Journal of Chemical Physics, 48(1), 244-251.
  65. Walrafen, G. E., Hokmadabi, M. S., & Yang, W.-H. (1986). Raman isosbestic points from liquid water. The Journal of Chemical Physics, 85(12), 6964–6969. https://doi.org/10.1063/1.451383
  66. Wang, Z., Pakoulev, A., Pang, Y., & Dlott, D. D. (2003). Vibrational substructure in the OH stretching band of water. Chemical physics letters, 378(3-4), 281-288.
  67. Zhelyaskov, V., Georgiev, G., Nickolov, Z., & Miteva, M. (1989). Concentration (D2O in H2O) and temperature Raman study of the molecular interactions in the OD stretching spectra of D2O and D2O/H2O mixtures using the fourier deconvolution technique. Journal of Raman spectroscopy, 20(2), 67-75.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper