q-Gaussian and q-BWF Functions Applied to the Decomposition of Pulsar Profiles: Preliminary Results

q-Gaussian and q-BWF Functions Applied to the Decomposition of Pulsar Profiles: Preliminary Results

Loading document ...
Loading page ...


Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2768 7 12 1-9 Volume 13 - Jun 2024


The EPN Database of Pulsar Profiles contains data provided by several generous researchers. The data of pulsar profiles are proposed in three different formats. One is the plain text format which allows an easy use of data to test fitting procedures. Literature reports pulsar profile fits made by means of Gaussian line shapes. Here we propose the use of the q-Gaussian functions, which are generalizing the Gaussian functions. Since the observed profiles are also asymmetric, we propose the use for fitting of the q-BWF functions too. These functions are generalizing the Breit-Wigner-Fano line shapes, with the Breit-Wigner factor substituted by the q-exponential function. The q-exponential was proposed by Constantino Tsallis in 1988 for his generalization of Boltzmann-Gibbs statistics. Preliminary fitting examples are here shown, of some profiles from the EPN Database.


Pulsar Profiles, Profile Decomposition, q-Gaussian Tsallis Lines, Breit-Wigner-Fano Line Shape, q-BWF Line Shape


  1. Backer, D. C. (1975). Pulsar average waveforms and hollow cone beam models (No. X-693-75-138). https://ntrs.nasa.gov/api/citations/19750018870/downloads/19750018870.pdf
  2. Backer, D. C. (1976). Pulsar average wave forms and hollow-cone beam models. Astrophysical Journal, Vol. 209, p. 895-907.
  3. Beskin, V. S., Chernov, S. V., Gwinn, C. R., & Tchekhovskoy, A. A. (2015). Radio pulsars. Space Science Reviews, 191, 207-237. https://doi.org/10.1007/s11214-015-0173-8
  4. Bianconi, A. (2003). Ugo Fano and shape resonances. In AIP Conference Proceedings (Vol. 652, No. 1, pp. 13-18). American Institute of Physics.
  5. Bilous, A.V., Kondratiev, V.I., Kramer, M., Keane, E.F., Hessels, J.W.T., Stappers, B.W., Malofeev, V.M., Sobey, C., Breton, R.P., Cooper, S., & Falcke, H. (2016). A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra. Astronomy & Astrophysics, 591, p.A134.
  6. Dai, S., Hobbs, G., Manchester, R.N., Kerr, M., Shannon, R.M., van Straten, W., Mata, A., Bailes, M., Bhat, N.D.R., Burke-Spolaor, S., & Coles, W.A. (2015). A study of multifrequency polarization pulse profiles of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 449(3), pp.3223-3262.
  7. Devi, S. (2021). Asymmetric Tsallis distributions for modeling financial market dynamics. Physica A: Statistical Mechanics and Its Applications, 578, 126109
  8. Dyks, J., Wright, G. A. E., & Demorest, P. (2010). Rotational asymmetry of pulsar profiles. Monthly Notices of the Royal Astronomical Society, 405(1), 509-519.
  9. Dyks, J. (2017). The geometry of a radio pulsar beam. Monthly Notices of the Royal Astronomical Society: Letters, 471(1), L131-L134.
  10. Fano, U. (1961). Effects of configuration interaction on intensities and phase shifts. Physical review, 124(6), 1866.
  11. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61: 14095–14107.
  12. Guojun, Q., Manchester, R. N., Lyne, A. G., & Gould, D. M. (1995). Polarization and Faraday rotation measurements of southern pulsars. Monthly Notices of the Royal Astronomical Society, 274(2), 572-588.
  13. Han, J. L., & Manchester, R. N. (2001). The shape of radio pulsar beams. Mon. Not. R. Astron. Soc, 320, L35-L40.
  14. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  15. Hankins, T. H., & Rankin, J. M. (2009). Arecibo Multi-Frequency Time-Aligned Pulsar Average-Profile and Polarization Database. The Astronomical Journal, 139(1), 168.
  16. Harding, A. K. (2017). Pulsar emission physics: The first fifty years. Proceedings of the International Astronomical Union, 13(S337), 52-57.
  17. Hewish, A., Bell, S. J., Pilkington, J. D., Frederick Scott, P., & Collins, R. A. (1979). Observation of a rapidly pulsating radio source. In A Source Book in Astronomy and Astrophysics, 1900–1975 (pp. 498-504). Harvard University Press.
  18. Johnston, S., & Kerr, M. (2018). Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope. Monthly Notices of the Royal Astronomical Society, 474(4), 4629-4636.
  19. Karastergiou, A., & Johnston, S. (2007). An empirical model for the beams of radio pulsars. Monthly Notices of the Royal Astronomical Society, 380(4), 1678-1684.
  20. Kramer, M., Wielebinski, R., Jessner, A., Gil, J. A., & Seiradakis, J. H. (1994). Geometrical analysis of average pulsar profiles using multi-component Gaussian FITS at several frequencies. I. Method and analysis. Astronomy and Astrophysics Suppl., Vol. 107, p. 515-526 (1994), 107, 515-526.
  21. Kramer, M. (1994). Geometrical analysis of average pulsar profiles using multi-component Gaussian FITS at several frequencies. II. Individual results. Astronomy and Astrophysics Suppl., Vol. 107, p. 527-539 (1994), 107, 527-539.
  22. Kramer, M., Xilouris, K.M., Lorimer, D.R., Doroshenko, O., Jessner, A., Wielebinski, R., Wolszczan, A., & Camilo, F. (1998). The characteristics of millisecond pulsar emission. I. Spectra, pulse shapes, and the beaming fraction. The Astrophysical Journal, 501(1), p.270.
  23. Kramer, M., Bell, J.F., Manchester, R.N., Lyne, A.G., Camilo, F., Stairs, I.H., D'Amico, N., Kaspi, V.M., Hobbs, G., Morris, D.J., & Crawford, F. (2003). The Parkes Multibeam Pulsar Survey–III. Young pulsars and the discovery and timing of 200 pulsars. Monthly Notices of the Royal Astronomical Society, 342(4), pp.1299-1324.
  24. Lorimer, D. R. and Kramer, M. (2012). Handbook of pulsar astronomy, volume 4 of Cambridge observing handbooks for research astronomers ; 4. Cambridge Univ. Press, Cambridge [u.a.].
  25. Löwe, N. (2021). Analysing the Rotating Vector Model of Pulsar Radio Emission. Master’s Thesis, University of Bielefeld, Faculty of Physics
  26. Lyne, A. G., & Manchester, R. N. (1988). The shape of pulsar radio beams. Monthly Notices of the Royal Astronomical Society, 234(3), 477-508.
  27. Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
  28. Mitra, D., Arjunwadkar, M., & Rankin, J. M. (2015). Polarized quasiperiodic structures in pulsar radio emission reflect temporal modulations of non-stationary plasma flow. The Astrophysical Journal, 806(2), 236.
  29. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  30. Rankin, J. M. (1983). Toward an Empirical Theory of Pulsar Emission-Part Two-on the Spectral Behavior of Component Width. Astrophysical Journal, Vol. 274, NO. 1, P. 359, 1983, 274, 359.
  31. Rankin, J. (2016). Observing the Plasma-physical Processes Behind Pulsar Radiation, Goddard Pulsar Workshop, June 2016, available https://fermi.gsfc.nasa.gov/science/mtgs/pulsar_mag/slides/Rankin.pdf
  32. Rankin, J. (2022). Radio pulsar beam geometry at lower frequencies: bright sources outside the Arecibo sky. Monthly Notices of the Royal Astronomical Society, 514(3), 3202-3211.
  33. Ruderman, M. A., & Sutherland, P. G. (1975). Theory of pulsars-Polar caps, sparks, and coherent microwave radiation. Astrophysical Journal, vol. 196, Feb. 15, 1975, pt. 1, p. 51-72., 196, 51-72.
  34. Sparavigna, A. C. (2015). Recurrence plots of pulsar profiles. Philica, 533.
  35. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. Int. J. Sciences, 12(3), 27-40, 2023, http://dx.doi.org/10.18483/ijSci.2671 Available at SSRN: https://ssrn.com/abstract=4398623
  36. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions generalizing the Breit-Wigner-Fano functions. Zenodo. https://doi.org/10.5281/zenodo.8356165
  37. Sparavigna, A. C. (2024). The Fitted q-Gaussian Function, from Voigt Profile to Kubo Lineshape. International Journal of Sciences, 13(03), 1-16.
  38. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14-24.
  39. Sparavigna, A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. doi:10.26434/chemrxiv-2023-bwnmw
  40. Sparavigna, A. C. (2024). Pyrene and Biochar (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-7zbtf
  41. Sparavigna, A. C. (2024). Graphene and Graphene Oxide (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-86stv-v2
  42. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  43. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  44. Wahl, H., Rankin, J., Venkataraman, A., & Olszanski, T. (2023). Radio pulsar emission-beam geometry at low frequency: LOFAR High-Band Survey sources studied using Arecibo at 1.4 GHz and 327 MHz. Monthly Notices of the Royal Astronomical Society, 520(1), 314-321.
  45. Wang, H.G., Pi, F.P., Zheng, X.P., Deng, C.L., Wen, S.Q., Ye, F., Guan, K.Y., Liu, Y. and Xu, L.Q., 2014. A Fan Beam Model for radio pulsars. I. observational evidence. The Astrophysical Journal, 789(1), p.73.
  46. Wojdyr, M. (2010). Fityk: a general‐purpose peak fitting program. Journal of Applied Crystallography, 43(5‐1), 1126-1128.
  47. Wu, X., & Manchester, R. N. (1992). The Intensity Distribution of the Emission Beam and A Discussion of the Radio Luminosity of Pulsars. International Astronomical Union Colloquium, 128, 362–365. doi:10.1017/S0002731600155532

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper