Hydroxyl-Stretching Region in the Raman Broad Scans on Minerals of the Vivianite Group (Vivianite, Baricite, Bobierrite, Annabergite, Erythrite)

Hydroxyl-Stretching Region in the Raman Broad Scans on Minerals of the Vivianite Group (Vivianite, Baricite, Bobierrite, Annabergite, Erythrite)

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2787 21 60 23-36 Volume 13 - Aug 2024

Abstract

Vivianite is a hydrated iron phosphate mineral (Fe3(PO4)2•8H2O), crystallized in a monoclinic system. It is the endmember of a mineral series known as the vivianite group, where minerals have the general formula A3(XO4)2•8H2O, A is a divalent metal cation and X is phosphorus P or arsenic As. Today, vivianite is attracting interest as a promising material for recovering phosphorous from wastewaters. In fact, the presence in wastewater sludges of soluble iron and phosphorus can lead to vivianite formation. As a crystal, it is a naturally occurring Van der Walls material. It can be easily characterized by means of Raman and infrared spectroscopies. Here we will consider the Raman spectroscopy, precisely that related to the hydroxyl-stretching region. We will propose the deconvolutions in q-Gaussian functions of spectra from RRUFF database, comparing the obtained results with those available from literature. Besides vivianite, we will consider also baricite, bobierrite, annabergite and erythrite, other members of the vivianite group. About the hydroxyl-stretching region and the use of q-Gaussians, we take the chance to continue a discussion regarding the Raman spectroscopy of water, discussion that we started in March 2024.

Keywords

Vivianite Group Minerals, Vivianite, Baricite, Bobierrite, Annabergite, Erythrite, Raman Spectroscopy, Q-Gaussian Functions, Tsallis Statistics, Hydroxyl-Stretching Raman Region, OH-Stretching Raman Region, Biochar, Wastewater Treatment, Fertilizers, Minerals On Mars, Minerals On Moon

References

  1. Carey, D. M., & Korenowski, G. M. (1998). Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics, 108(7), 2669–2675, https://doi.org/10.1063/1.475659
  2. Chaplin, M. (2022). Water structure and science, London South Bank University, https://water.lsbu.ac.uk/water/water_vibrational_spectrum.html
  3. Chen, T., Song, X., & Xing, M. (2023). Study on anaerobic phosphorus release from pig manure and phosphorus recovery by vivianite method. Scientific Reports, 13(1), 16095.
  4. Cheng, Y., Shi, Z., Shi, Y., Zhang, Y., Zhang, S., & Luo, G. (2023). Biochar promoted microbial iron reduction in competition with methanogenesis in anaerobic digestion. Bioresource Technology, 387, 129561.
  5. Đuričković, I., Claverie, R., Bourson, P., Marchetti, M., Chassot, J. M., & Fontana, M. D. (2011). Water–ice phase transition probed by Raman spectroscopy. Journal of Raman Spectroscopy, 42(6), 1408-1412.
  6. Dyar, M.D., Jawin, E.R., Breves, E., Marchand, G., Nelms, M., Lane, M.D., Mertzman, S.A., Bish, D.L., & Bishop, J.L. (2014). Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99(5-6), pp.914-942.
  7. Eshun, L. E., Coker, V. S., Shaw, S., & Lloyd, J. R. (2024). Strategies for optimizing biovivianite production using dissimilatory Fe (III)-reducing bacteria. Environmental Research, 242, 117667.
  8. Eshun, L. E., García-López, A. M., Recena, R., Coker, V., Shaw, S., Lloyd, J., & Delgado, A. (2024). Assessing microbially mediated vivianite as a novel phosphorus and iron fertilizer. Chemical and Biological Technologies in Agriculture, 11(1), 47.
  9. Frisenda, R., Niu, Y., Gant, P., Muñoz, M., & Castellanos-Gomez, A. (2020). Naturally occurring van der Waals materials. npj 2D Materials and Applications, 4(1), 38.
  10. Frost, R. L., Martens, W., Williams, P. A., & Kloprogge, J. T. (2002). Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineralogical Magazine, 66(6), 1063-1073.
  11. Frost, R., & Weier, M. (2004). Raman spectroscopic study of vivianites of different origins. Neues Jahrbuch fur Mineralogie, Abhandlungen, 10, 445-463.
  12. Gallo, P., Amann-Winkel, K., Angell, C.A., Anisimov, M.A., Caupin, F., Chakravarty, C., Lascaris, E., Loerting, T., Panagiotopoulos, A.Z., Russo, J., & Sellberg, J.A. (2016). Water: A tale of two liquids. Chemical reviews, 116(13), pp.7463-7500.
  13. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  14. He, Z., Chang, J., Feng, Y., Wang, S., Yuan, Q., Liang, D., Liu, J. and Li, N., 2022. Carbon nanotubes accelerates the bio-induced vivianite formation. Science of The Total Environment, 844, p.157060.
  15. Jeon, K., Lee, N., Bae, S., Goddard III, W. A., Kim, H., & Lee, W. (2015). Theoretical and experimental studies of the dechlorination mechanism of carbon tetrachloride on a vivianite ferrous phosphate surface. The Journal of Physical Chemistry A, 119(22), 5714-5722.
  16. Jin, S., Hao, M., Guo, Z., Yin, B., Ma, Y., Deng, L., Chen, X., Song, Y., Cao, C., Chai, C., & Wei, Q. (2024). Evidence of a hydrated mineral enriched in water and ammonium molecules in the Chang’e-5 lunar sample. Nature Astronomy, pp.1-11.
  17. Kappler, A., & Newman, D. K. (2004). Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Ac. 68, 1217–1226. https://doi.org/10.1016/j.gca.2003.09.006
  18. Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015). 1. The power of databases: The RRUFF project. In Highlights in mineralogical crystallography (pp. 1-30). De Gruyter (O).
  19. Li, S., Quhe, R., Weng, M., Feng, Y., Zuo, Y., Xiao, W., Zheng, J., Lu, J, & Pan, F. (2016). Few-layer Fe3 (PO4) 2• 8H2O: novel H-bonded 2D material and its abnormal electronic properties. The Journal of Physical Chemistry C, 120(46), pp.26278-26283.
  20. Li, Q., Chen, J. Q., Wang, M., Liu, X., Liu, X., Wang, J., & Mu, Y. (2024). Ammonium Disrupts Vivianite Crystal Hydration to Enhance Crystallization Rate for Phosphorus Recovery. ACS ES&T Engineering, 4(3), 728-736. Liu, J., Cheng, X., Qi, X., Li, N., Tian, J., Qiu, B., Xu, K., & Qu, D. (2018). Recovery of phosphate from aqueous solutions via vivianite crystallization: Thermodynamics and influence of pH. Chemical Engineering Journal, 349, pp.37-46.
  21. Liu, Y., Jin, J., Li, J., Zou, Z., Lei, R., Sun, J., & Xia, J. (2022). Enhanced phosphorus recovery as vivianite from anaerobically digested sewage sludge with magnetic biochar addition. Sustainability, 14(14), 8690.
  22. Lu, S., Zeng, W., Gong, Q., Zhang, J., Peng, X., Yu, X., & Peng, Y. (2024). Anaerobic recovery of vivianite from waste-activated sludge through combined sludge pre-fermentation and agroforestry biomass-based biochar. Process Safety and Environmental Protection.
  23. Martens, W., Frost, R. L., & Kloprogge, J. T. (2003). Raman spectroscopy of synthetic erythrite, partially dehydrated erythrite and hydrothermally synthesized dehydrated erythrite. Journal of Raman Spectroscopy, 34(1), 90-95.
  24. McCammon, C. A., & Burns, R. G. (1980). The oxidation mechanism of vivianite as studies by Möessbauer spectroscopy. American Mineralogist, 65(3-4), 361-366.
  25. Metz, R., Kumar, N., Schenkeveld, W. D., & Kraemer, S. M. (2023). Rates and Mechanism of Vivianite Dissolution under Anoxic Conditions. Environmental Science & Technology, 57(45), 17266-17277.
  26. Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Férard, C., Skouri-Panet, F., Guigner, J.M., Posth, N., & Galvez, M. (2009). Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 73(3), pp.696-711.
  27. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  28. Ogorodova, L., Vigasina, M., Mel'chakova, L., Rusakov, V., Kosova, D., Ksenofontov, D., & Bryzgalov, I. (2017). Enthalpy of formation of natural hydrous iron phosphate: Vivianite. The Journal of Chemical Thermodynamics, 110, 193-200.
  29. Ogorodova, L. P., Gritsenko, Y. D., Vigasina, M. F., Kosova, D. A., Melchakova, L. V., & Fomina, A. D. (2020). Natural Magnesium hydrous orthophosphates bobierrite and kovdorskite: FTIR, Raman, thermal, and thermochemical study. Geochemistry International, 58, 189-199.
  30. Paskin, A. (2024). Nucleation, Growth and Transformation Phenomena of Vivianite (Doctoral dissertation). Doctoral_Dissertation_FU_Berlin
  31. Pinto, H. P., Michalkova, A., & Leszczynski, J. (2014). First-principles studies of paramagnetic vivianite Fe3 (PO4) 2• 8H2O surfaces. The Journal of Physical Chemistry C, 118(12), 6110-6121.
  32. Priambodo, R., Shih, Y. J., & Huang, Y. H. (2017). Phosphorus recovery as ferrous phosphate (vivianite) from wastewater produced in manufacture of thin film transistor-liquid crystal displays (TFT-LCD) by a fluidized bed crystallizer (FBC). RSC advances, 7(65), 40819-40828.
  33. Pring, A. (1998). Dana's New Mineralogy, xiv+ 1819 pp. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, Inc. Price£ 190.00 (hard covers). ISBN 0 471 19310 0. Geological Magazine, 135(5), 723-732.
  34. Prot, T., Nguyen, V.H., Wilfert, P., Dugulan, A.I., Goubitz, K., De Ridder, D.J., Korving, L., Rem, P., Bouderbala, A., Witkamp, G.J., & Van Loosdrecht, M.C.M. (2019). Magnetic separation and characterization of vivianite from digested sewage sludge. Separation and Purification Technology, 224, pp.564-579.
  35. Prot, T., Wijdeveld, W., Eshun, L. E., Dugulan, A. I., Goubitz, K., Korving, L., & Van Loosdrecht, M. C. M. (2020). Full-scale increased iron dosage to stimulate the formation of vivianite and its recovery from digested sewage sludge. Water Research, 182, 115911.
  36. Prot, T., Korving, L., Dugulan, A. I., Goubitz, K., & Van Loosdrecht, M. C. M. (2021). Vivianite scaling in wastewater treatment plants: Occurrence, formation mechanisms and mitigation solutions. Water Research, 197, 117045.
  37. Rothe, M., Kleeberg, A., & Hupfer, M. (1026). The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth-Sci. Rev. 158, 51–64. https://doi.org/10.1016/j.earscirev.2016.04.008
  38. Rouzies, D., & Millet, J. M. M. (1993). Mössbauer study of synthetic oxidized vivianite at room temperature. Hyperfine Interactions, 77(1), 19-28.
  39. Silva, G. G., Vincenzi, R. A., de Araujo, G. G., Venceslau, S. J. S., & Rodrigues, F. (2024). Siderite and vivianite as energy sources for the extreme acidophilic bacterium Acidithiobacillus ferrooxidans in the context of mars habitability. Scientific Reports, 14(1), 14885.
  40. Slomp, C.P. (2023). Vivianite blues. Nat. Geosci. 16, 394. https://doi.org/10.1038/s41561-023-01174-7
  41. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. Int. J. Sciences, 12(3), 27-40.
  42. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  43. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  44. Sparavigna, A. C. (2023). SERS Spectral Bands of LCysteine, Cysteamine and Homocysteine Fitted by Tsallis qGaussian Functions. International Journal of Sciences, 12(09), 14–24. https://doi.org/10.18483/ijsci.2721
  45. Sparavigna, A. C. (2023). Multifunctional porosity in biochar. Int. J. Sciences, 7, 41-54. Available https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4544693
  46. Sparavigna, A. C. (2023). The Catcher in the Water: Magnetic Biochar for the Treatment of Wastewater. Available at SSRN 4409849.
  47. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9.
  48. Sparavigna, A. C. (2024). Water, q-Gaussians and Raman Spectroscopy. International Journal of Sciences, 13(03), 17-25. http://dx.doi.org/10.18483/ijSci.2751
  49. Sparavigna, A. C. (2024). Applying q-Gaussians to the OH-stretching Raman bands of Water and Ice. International Journal of Sciences, 13(04), 1-10. http://dx.doi.org/10.18483/ijSci.2756
  50. Treiman, A.H., Lanza, N.L., VanBommel, S., Berger, J., Wiens, R., Bristow, T., Johnson, J., Rice, M., Hart, R., McAdam, A. and Gasda, P., 2023. Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars. Minerals, 13(9), p.1122.
  51. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  52. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  53. Wang, Z., Pakoulev, A., Pang, Y., & Dlott, D. D. (2003). Vibrational substructure in the OH stretching band of water. Chemical physics letters, 378(3-4), 281-288.
  54. Wang, S., An, J., Wan, Y., Du, Q., Wang, X., Cheng, X., Li, N. (2018). Phosphorus competition in bioinduced vivianite recovery from wastewater. Environmental science & technology, 52(23), pp.13863-13870.
  55. Wang, P., Zuo, W., Zhu, W., Wang, S., Li, B., Jiang, Y., Wang, G., Tian, Y., & Zhang, Y. (2023). Deciphering the interaction of heavy metals with Geobacter-induced vivianite recovery from wastewater. Water Research, 245, p.120621.
  56. Wilfert, P., Mandalidis, A., Dugulan, A.I., Goubitz, K., Korving, L., Temmink, H., Witkamp, G.J., & Van Loosdrecht, M.C.M. (2016). Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water research, 104, pp.449-460.
  57. Wilfert, P., Dugulan, A. I., Goubitz, K., Korving, L., Witkamp, G. J., & Van Loosdrecht, M. C. M. (2018). Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water research, 144, 312-321.
  58. Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5), 1126-1128.
  59. Wu, Y., Luo, J., Zhang, Q., Aleem, M., Fang, F., Xue, Z., & Cao, J. (2019). Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. Chemosphere, 226, 246-258.
  60. Wu, Z., Zheng, Q., Zhang, Y., Pang, Y., Huang, T., & Peng, D. (2023). Phosphorus recovery from waste-activated sludge through vivianite crystallization enhanced by magnetic biochar. Journal of Cleaner Production, 392, 136294.
  61. Yang, X., Zhang, C., Zhang, X., Deng, S., Cheng, X., & Waite, T. D. (2023). Phosphate recovery from aqueous solutions via vivianite crystallization: Interference of FeII oxidation at different DO concentrations and pHs. Environmental Science & Technology, 57(5), 2105-2117.
  62. Zhang, J., Chen, Z., Liu, Y., Wei, W., & Ni, B. J. (2022). Phosphorus recovery from wastewater and sewage sludge as vivianite. Journal of Cleaner Production, 370, 133439.
  63. Zhao, L., Liu, L., Liu, X., Shu, A., Zou, W., Wang, Z., Zhou, Y., Huang, C., Zhai, Y. and He, H., 2024. Efficient phosphorus recovery from waste activated sludge: pretreatment with natural deep eutectic solvent and recovery as vivianite. Water Research, p.122161.
  64. Zhou, G.W., Yang, X.R., Marshall, C.W., Li, H., Zheng, B.X., Yan, Y., Su, J.Q., & Zhu, Y.G. (2017). Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite enrichments. Frontiers in microbiology, 8, p.589.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper