Low-Temperature Hydrothermal Synthesis of Zinc Oxide Structures on Glass, Silicon and Indium Tin Oxide Substrates

Low-Temperature Hydrothermal Synthesis of Zinc Oxide Structures on Glass, Silicon and Indium Tin Oxide Substrates

Loading document ...
Loading page ...


Author(s): Gerrard Eddy Jai Poinern, Derek Fawcett

Download Full PDF Read Complete Article

514 1229 63-69 Volume 3 - Apr 2014


In this study, a low-temperature hydrothermal method is used to synthesize crystalline zinc oxide powders with various morphologies on glass, silicon and indium tin oxide substrates. The study found that each respective substrate produced a variation in the morphology of the zinc oxides produced at the reaction temperature of 90 ºC. The crystallinity and particle size of the zinc oxide structures on each substrate type was characterized using both X-ray diffraction and Field Emission Scanning Electron Microscopy.


  1. Yi, G. C., Wang, C. and Park, W. I. ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol., 2005; 20: 22-34
  2. Wang, Z. L. Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter, 2004; 16: R829–R858
  3. Singh, D. P. Synthesis and Growth of ZnO Nanowires. Science of Advanced Materials, 2010; 2: 245–272
  4. Inoue, Y., Okamoto, M., Kawahara, T. and Morimoto, J. Superimposed emissions on enhanced green emission from ZnO:Pr powders by evacuated sealed silica tube method, J. Alloys Compd. 2006; 40: 1234–1237
  5. Zhang, Y., Ram, Y. K., Stefanakos, E. K., and Goswami, D. Y. Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, Volume 2012, Article ID 624520, 1-22
  6. Zhao, F., Li, X., Zheng, J., Yang, X., et al. ZnO pine-nanotree arrays grown from facile metal chemical corrosion and oxidation, Chem. Mater, 2008; 20: 1197–1199
  7. Calhoun, M. F., Sanchez, J., Olaya, D., Gershenson, M. E., et al. Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nat. Mater, 2008; 7: 84–89
  8. Zhou, J., Xu, N. and Wang, Z. L. Dissolving behaviour and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 2006; 18(18): 2432–2435
  9. Taccola, L., Raffa, V., Riggio, C., Vittorio, O., Lorio, M. C., et al. Zinc oxide nanoparticles as selective killers of proliferating cells. International Journal of Nanomedicine, 2011; 6: 1129-1140
  10. Rasmussen, J. W., Martinez, E., Louka, P. and Wingett, D. G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications.Expert. Opin. Drug Deliv, 2010; 7(9): 1063-1077
  11. Tseng Y. K, Huang, C. J, Cheng, H. M., Lin, I. N., et al. Characterization and field emission properties of needle-like Zinc Oxide nanowires grown vertically on conductive Zinc Oxide films. Advanced functional materials, 2003; 13(10) 811-814
  12. Yi, G. C, Wang, C. and Park, W. ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol., 2005; 20: 22-34
  13. Fan, Z.Y. and Lu, J. G. Electrical property of ZnO nanowires characterized by a scanning probe, Appl. Phys. Lett., 2005; 86: 032111–032113
  14. Lin, Z. X., Guo, T. L., Hu, L. Q., Yao, L.,J.J. Wang, J. J., et al. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat-panel displays. Acta Phys. Sin., 2006; 55: 5531–5534
  15. Martinson, A. B. F., Elam, J. W., Hupp, J. T. and Pellin, M. J. ZnO nanotube based dye sensitized solar cells, Nano Lett., 2007; 7: 2183–2187
  16. Wang, Z. L. Nanostructures of zinc oxide. Materials Today, 2004; 7(6) 26-33
  17. Gimenez, A. J., Yá˜nez-Limón, J. M. and Seminario, J. M. ZnO-paper based photoconductive UV sensor, J. Phys. Chem. C, 2011; 115: 282–287
  18. Falconi, C., D'Amico, A., and Wang, Z. L. Wireless Joule nano-heaters. Sensors and Actuators B: Chemical, 2007; 127(1): 54-62
  19. Gao, P. X. and Wang, Z. L. Nanoarchitectures of semiconducting and piezoelectric zinc oxide. Journal of Applied Physics, 2005; 97: 1-7
  20. Wang, Z.L. and Song, J. H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006; 312: 242-246
  21. Kanade, K. G., Kale, B. B., Aiyer, R. C. and Das, B. K. Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Materials Research Bulletin, 2006; 41: 590-600
  22. Xu, C. X., Sun, X. W., Dong, Z. L., Yu, M. B., Xiong, Y. Z. Chen, J. S. Magnetic nanobelts of iron-doped zinc oxide. Applied Physics Letters, 2005; 86: 1-3
  23. Zhao, M. H., Wang, Z. L., and Mao, S. X., Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezo-response Force Microscope. Nano Letters, 2004; 4(4): 587-890
  24. Raula, M., Rashid, M.H., Paira, T. K., Dinda, E., Mandal, T. K. Ascorbate-assisted growth of hierarchical zno nanostructures: sphere, spindle, and flower and their catalytic properties, Langmuir 2010; 26: 8769–8782
  25. Sarkar, S. and Basak, D. Synthesis of dense intersecting branched tree-like ZnO nanostructures and its superior LPG sensing property. Sensors and Actuators B: Chemical, 2013; 176: 374-378
  26. Wang, Z. Q., Liu, X. D.,Gong, J. F.,Huang, H. B., Gu, S. L.,Yang, S. G. Epitaxial growth of ZnO nanowires on ZnS nanobelts by metal organic chemical vapor deposition, Cryst. Growth Des, 2008; 8: 3911–3913
  27. Daragh, B., Rabie, F. A., Teresa, B., David, G. R., Brendan, T., et al. Study of morphological and related properties of aligned zinc oxide nanorods grown by vapour phase transport on chemical bath deposited buffer layers, Cryst. Growth Des, 2011; 11: 5378–5386
  28. Cheng, J. P., Zhang, X. B., Tao, X. Y., Lu, H. M., et al. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process, J. Phys. Chem. B, 2006; 110: 10348–10353
  29. Hong, J., Choi, J., Jang, S. S., Gu, J., Chang, Y., et al. Magnetism in dopant-free ZnO nanoplates, Nano Lett, 2012; 12: 576–581
  30. Gao, P. X., Mai, W. J., Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices, Nano Lett, 2006; 6: 2536–2543
  31. Zhao, F. H., Lin, W. J., Wu, M. M., Xu, N. S., et al. Hexagonal and prismatic nanowalled ZnO microboxes, Inorg. Chem, 2006; 45: 3256–3260
  32. Li, S., Li, Z. W., Tay, Y. Y., Armellin, J., Gao, W. Growth mechanism and photonic behaviours of nanoporous ZnO microcheerios, Cryst. Growth Des, 2008; 8: 1623– 1627
  33. Li, C., Fang, G. J., Su, F. H., Li, G. H., et al. Self-organized ZnO microcombs with cuboid nanobranches by simple thermal evaporation, Cryst. Growth Des, 2006; 6: 2588–2591
  34. Shi, R., Yang, P., Dong, X., Ma, Q., Zhang, A. Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis. Applied Surface Science, 2013; 264: 162– 170
  35. Wu, C. C., Wu, D. S., Lin, P.R., Chen, T. N., Horng, R. H. Three-step growth of well-aligned ZnO nanotube arrays by self-catalyzed metal organic chemical vapour deposition method, Cryst. Growth. Des, 2009; 9: 4555–4561
  36. Protasova, L. N., Rebrov, E. V., Choy, K. L., et al., ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols, Catalysis Science and Technology, 2011; 1(5): 768–777
  37. Petersen, E. W., Likovich, E. M., Russell, K. J., and Narayanamurti, V. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles, Nanotechnology, 2009; 20(40): Article ID 405603
  38. Byrne, D., McGlynn, E., Kumar, K., Biswas, M., Henry, M. O., Hughes, G. Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays, Cryst. Growth Des, 2010; 10: 2400– 2408
  39. [39] Wang, L., Zhang, X., Zhao, S., Zhou, G., Zhou, Y., and Qi, J. Synthesis of well-aligned ZnO nanowires by simple physical vapour deposition on c-oriented ZnO thin films without catalysts or additives, Applied Physics Letters, 2005; 86(2): Article ID 024108
  40. Tian, Z.R., et al., Complex and oriented ZnO nanostructures. Nature Materials, 2003; 2: 821-826
  41. Sugunan, A., Warad, H. C., Boman, M. and Dutta, J. Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine. Journal of Sol-Gel Science and Technology, 2006; 39(1): 49–56
  42. Lu, C. Y., Chang, S. J., Chang, S. P., et al., Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates, Applied Physics Letters, 2006; 89(15): Article ID 153101
  43. Lu, C. Y., Chang, S. P., Chang, S. J., et al., A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template, Semiconductor Science and Technology, 2009; 24(7): Article ID 075005
  44. Kim, J. Y., Cho, J. W., and Kim, S. H. The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers, Materials Letters, 2011; 65(8): 1161–1164
  45. Jiaqiang, X., Yuping, C., Daoyong, C., and Jianian S. Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sensors and Actuators B, 2006; 113: 526-531
  46. Song, J., Baek, S., Lee, H. and Lim, S. Selective growth of vertical ZnO nanowires with the control of hydrothermal synthesis and nano-imprint technology, Journal of Nanoscience and Nanotechnology, 2009; 9(6): 3909–3913

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue November 2021

Volume 10, November 2021

Table of Contents

World-wide Delivery is FREE

Share this Issue with Friends:

Submit your Paper