Download Full PDF
Read Complete Article
~ 1113
` 1799
a 1-37
Volume 1 - Oct 2012
Abstract
Fullerene derivatives superfamily attracts a serious attention of pharmacologists since some of these variable agents were proven to be not only drug delivery carriers but anti - cancer and immunomodulators as well. Most specifically, photodynamic therapy of malignant tumors is known for the fullerenes engagement. However, there is an obvious deficit of information on the cellular and molecular mechanisms of the fullerenes pharmacological effects which is a true obstacle on the way leading to practical medicinal use of the latters. Particularly, the mode of both direct (immediate) and distant side effects origin along with a fullerenes impact on necrosis, apoptosis and cell proliferation processes are no doubt needed to get far more clearified. It is hardly possible to exaggerate a significance of the fullerene nanoparticles functionalization type, their sizes and surface nanotopology for further promoting of either cytoprotective or cytotoxic effects. Noteworthy, the antioxidant properties of some water soluble fullerene derivatives were revealed while the fullerenes induced ROS formation might be also occurred. One of the most intriguing peculiarity of the fullerenes as pharmacophores consists in capabilities of some of them to intervene into the structure domains of functional proteins including enzymes and organelles linked receptors as well as to play a role of intercalators interacting with DNA double helix which, in turn, leads to a number of crucial consequences such as the biopolymer conformational flexibility shifts, catalytic activity changes, ligand docking affinity impacts in cell signaling pathways. Last not least, the fullerens are about to compete with several natural metabolites and effectots which is itself a valid platform for pharmacological outreach. This Review deals with an Authors’s original attempt to analyse the above mentioned points with an aim to elucidate those properties, methodological and structural, of numerous fullerene adducts that determine their apoptosis- and cell proliferation – modulating effects with a special respect to a target cell / tumor type.
Keywords
fullerenes, signaling pathways, oxidative stress, cancer treatment, apoptosis control, targeted drug delivery
References
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharmaceutics, 2011, 8, 2101–2141
- Kateb, B.; Chiu, K.; Black, K.L.; Yamamoto, V.; Khalsa, B.; Ljubimova, J.Y.; Ding, H.; Patil, R.; Portilla-Arias, J.A.; Modo, M.; Moore, D.F.; Farahani, K.; Okun, M.S.; Prakash, N.; Neman, J.; Ahdoot, D.; Grundfest, W.; Nikzad, S.; Heiss, J.H. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? NeuroImage, 2011, 54, S106-S124
- Harhaji, L.; Isakovic, A.; Raicevic, N.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Markovic, I.; Trajkovic, V. Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. Eur. J. Pharmacol., 2007, 568, 89-98
- Dugan, L.L.; Turetsky, D.M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, R.; Shen, C.K.F.; Luh, T.Y.; Choi, D.W.; Lin, T.S. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. U.S.A, 1997, 94, 9434-9439.
- Monti, D.; Moretti, L.; Salvioli, S.; Strafolacince, E.; Malorni, W.; Pellicciari, R.; Schettini, G.; Bisaglia, M.; Pincelli, C.; Fumelli, C.; Bonafe, M.; Franceschi, C. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun., 2000, 277, 711-717
- Dugan, L.L.; Gabrielsen, J.K.; Yu, S.P.; Lin, T.S.; Choi, D.W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis., 1996, 3, 129-135
- Isakovic, A.; Markovic, Z.; Nikolic, N.; Todorovic-Markovic, B.; Vranjes-Djuric, S.; Harhaji, L.; Raicevic, N.; Romcevic, N.; Vasiljevic-Radovic, D.; Dramicanin, M.; Trajkovic, V. Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. Biomaterials, 2006, 27, 5049-5058
- Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.; Nikolic, Z.; Trajkovic, V. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci., 2006, 91, 173–183
- Yamawaki, H.; Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Cell Physiol., 2006, 290, C1495–C1502
- Yang, X.L.; Fan, C.H.; Zhu, H.S. Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol. InVitro, 2002, 16, 41–46
- Rancan, F.; Rosan, S.; Boehm, F.; Cantrell, A.; Brellreich, M.; Schoenberger, H.; Hirsch, A.; Moussa, F. Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat cells. J. Photochem. Photobiol., B., 2002, 67, 157–162
- Bosi, S.; L.Feruglio, L.; T.Da Ros, T.; G.Spalluto, G.; B.Gregoretti, B.; M.Terdoslavich, M. Hemolytic effects of water-soluble fullerene derivatives. J. Med. Chem., 2004, 47, 6711-6715
- Tabata, Y.; Ishii, T.; Aoyama, T.; Oki, R.; Hirano, Y.; Ogawa, O.; Ikada, Y. In: Perspectives of Fullerene Nanotechnology. Ed. E.Osawa, Kluwer Academic Publ., Dordrecht; Boston; London, 2001
- Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. .Nano Lett., 2005, 5, 2050–2057
- Darwish, A.D. Fullerenes. Annu. Rep. Prog. Chem., A, 2010, 106, 356–375
- Shirinkin, S.V.; Volkova, T.O.; Nemova, N.N. In: “Medicinal nanotechnology. The using of fullerenes in a therapy of respiratory diseasesâ€, Ed. Karelsky Sci. Centre RAS, Petrazavodsk. 2009
- Gao, J.; Wang, H.L.; Shreve, A.; Iyer, R. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications, Toxicol. Appl. Pharmacol., 2010, 244, 130–143
- Jung, H.; Wang, C.; Jang, W. Nano-C60 and hydroxylated C60: Their impacts on the environment, Toxicol. Environ. Health Sci., 2009, 1, 132-139
- Sidorov, L.N.; Yurovskaya, M.A.; Borschevsky, A.Ya.; Trushkov, I.V.; Ioffe, I.N. Fullerenes, Ed. Examination, Moscow. 2005
- Hirsch, A.; Brettreich, M. Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim. 2005
- Piotrovsky, L.B. Fullerenes in biology. Ed. Rostock. St. Petersburg. 2006
- Troshin, P.A.; Lyubovskaya, Z.N. Organic chemistry of fullerenes: basic reaction, types of fullerene compounds and prospects for their practical application. Adv. Chem. (Russ), 2008, 77, 324-369
- Ema, M.; Kobayashi, N.; Naya, M.; Hanai, S.; Nakanishi, Reproductive and developmental toxicity studies of manufactured nanomaterials. J. Reprod. Toxicol., 2010, 30, 343-352
- Markovic, Z.; Trajkovic, V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials, 2008, 29, 3561-3573
- Grausova, L.; Vacik, J.; Vorlicek, V.; Svorcik, V.; Slepicka, P.; Bilkova, P.; Vandrovcova, M.; Lisa, V.; Bacakovа, L. Fullerene C60 films of continuous and micropatterned morphology as substrates for adhesion and growth of bone cells. Diamond Relat. Mater., 2009, 18, 578-586
- Aschberger, K.; Johnston, H.J.; Stone, V.; Aitken, R.J.; Tran, C.L.; Hankin, S.M.; Peters, S.A.; Christensen, F.M. Review of fullerene toxicity and exposure – Appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol., 2010, 58, 455-473
- Da Ros, T.; Spalluto, G.; Prato, M. Biological applications of fullerene derivatives: a brief overview. Croat. Chem. Acta, 2001, 74, 743-755
- Da Ros, T. Twenty Years of Promises: Fullerene in Medicinal Chemistry. Carbon Mater.: Chem. Phys., 2008, 1, 1-21
- Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomed., 2007, 4, 639–649
- Satoh, M.; Takayanagi, I. Pharmacological Studies on Fullerene (C60), a Novel Carbon Allotrope, and Its Derivatives. J. Pharmacol. Sci., 2006, 100, 513-518
- Chawla, P.; Chawla, V.; Maheshwari, R.; Saraf, A.; Saraf, K. Fullerenes: from carbon to nanomedicine. Mini Reviews in Med. Chem., 2010, 10, 662-677
- Partha, R.; Conyers, J.L. Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed., 2009, 4, 261–275
- Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3, 362–382
- Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnol. Biol. Med., 2012, 8, 147-166
- Huh, A.J.; Kwon, Y.J. “Nanoantibioticsâ€: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 7, 128-145
- Koifman, O.I.; Mamardashvili, I.Z.; Antipin, I.S. Synthetic receptors based on porphyrins and their conjugates with kliks [4] arenes, Ed. Nauka, Moscow. 2006
- Satake, A.; Kobuke, Y. Dynamic supramolecular porphyrin system. Tetrahedron, 2005, 61, 13-41
- Tykhomyrov, A.A.; Nedzvetsky, V.S.; Klochkov, V.K.; Andrievsky,G.V. Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals.. Toxicology, 2008, 246, 158-165
- Spohn, P.; Hirsch, C.; Hasler, F.; Bruinink, A.; Krug, H.F.; Wick, P. C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ. Pollut., 2009, 157, 1134–1139
- Yokel, R.A.; MacPhail, R.C. Engineered nanomaterials: exposures, hazards, and risk prevention. J. Occup. Med. Toxicol., 2011, 6, 7-34
- Buseck, P.R. Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 2002, 203, 781-792
- Shinohara, N.; Gamo, M.; Nakanishi, J. Fullerene C60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol. Sci., 2011, 123, 576-589
- Orlova, M.A.; Orlov, A.P. Role of zinc in an organism and its influence on processes leading to apoptosis. Br. J. Med. Med. Res., 2011, 1, 239-305
- Portt, L.; Norman, G.; Clapp, C.; Greenwood, M. Anti-apoptosis and cell survival. Biochim. Biophys. Acta, 2011, 1813, 238-259
- Shvedova, A.A.; Kagan, V.E.; Fadeel, B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 63-88
- Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol., 2008, 229, 44-55
- Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2.-- versus 1O2. J. Am. Chem. Soc., 2003, 125, 12803-12809
- Scrivens, W.A.; Tour, J.M.; Creek, K.E.; Pirisi, L. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J. Am. Chem. Soc., 1994, 116, 4517-4518
- Maeda, R.; Noiri, E.; Isobe, H.; Homma, T.; Tanaka, T.; Negishi, K.; Doi, K.; Fujita, T.; Nakamura, E. A water-soluble fullerene vesicle alleviates angiotensin II-induced oxidative stress in human umbilical venous endothelial cells. Hypertension Res., 2008, 31, 141-151
- Fortner, J.D.; Lyon, D.Y.; Sayes, C.M.; Boyd, A.M.; J.C.Falkner, J.C.; E.M.Hotze, E.M.; L.B.Alemany, L.B.; Y.J.Tao, Y.J.; Guo, W.; Ausman, K.D.; Colvin, V.L.; Hughes, J.B. C-60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol., 2005, 39, 4307–4316
- Henry, T.B.; Menn, F.M.; Fleming, J.T.; Wilgus, J.; Compton, R.N.; Sayler, G.S. Attributing effects of aqueous C-60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect., 2007, 115, 1059–1065
- Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 2003, 21, 1166-1170
- Sayes, C.M.; Gobin, A.M.; Ausman, K.D.; Mendez, J.; West, J.; Colvin, V.L. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26, 7587-7595
- Oberdorster, E.; Zhu, S.; Blickley, T.; McClellan-Green, P.; Haasch, M. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon, 2006, 44, 1112-1120
- Andrievsky, G.; Klochkov, V.; Derevyanchenko, L. Is the C60 fullerene molecule toxic?! Fullerenes Nanotubes Carbon Nanostructures, 2005, 13, 363-376
- Andrievsky, G.; Klochkov, V.; Bordyuh, A.; Dovbeshko, G. Comparative analysis of two aqueous–colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–vis spectroscopy. Chem. Phys. Lett., 2002, 364, 8-17
- Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett., 2005, 5, 2578-2585
- Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol., 2007, 620, 168-180
- Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol., 2005, 39, 1378–1383
- Sayes, C.M.; Marchione, A.A.; Reed, K.L.; Warheit, D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett., 2007, 7, 2399-2406
- Baker, G.L.; Gupta, A.; Clark, M.L.; Valenzuela, B.R.; Staska, L.M. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci., 2008, 101, 122-131
- Horie, M.; Nishio, K.; Kato, H.; Shinohara, N.; Nakamura, A.; Fujita, K.; Kinugasa, S.; Endoh, S.; Yamamoto, K.; Yamamoto, O.; Niki, E.; Yoshida, Y.; Iwahashi, H. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J. Biochem., 2010, 148, 289-298
- Osuna, S.; Swart, M.; Solà , M. On the Mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry – Eur. J., 2010, 16, 3207-3214
- Zhou, S.; Burger, C.; Chu, B.; Sawamura, M.; Nagahama, N.; Toganoh, M. Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. Science, 2001, 291, 1944-1947
- Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.; Nakamura, E. Stacking of conical mesogens with a fullerene apex into polar columns in crystals and liquid crystals. Nature, 2002, 419, 702-705
- Yin, J.J.; Lao, F.; Fu, P.P.; Wamer, W.G.; Zhao, Y.; Wang, P.C. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30, 611-621
- Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. Photoinduced biochemical-activity of fullerene carboxylic-acid. J. Am. Chem. Soc., 1993, 115, 7918–7919
- Husebo, L.O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L.J. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc., 2004, 126, 12055-12064
- Yamakoshi, Y.N.; Yagami, T.; Sueyoshi, S.; Miyata, N. Acridine adduct of [60]fullerene with enhanced DNA-cleaving activity. J. Org. Chem., 1996, 61, 7236–7237
- Andersson, T.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerstrom, O. C60 embedded in gamma-cyclodextrin—a water-soluble fullerene. J. Chem. Soc. Chem. Commun. 1992, 8, 604–606
- Makha, M.; Purich, A.; Raston, C.L.; Sobolev, A.N. Structural diversity of host-guest and intercalation complexes of fullerene C60. Eur. J. Inorg. Chem., 2006, 507-517
- Deguchi, S.; Mukai, S.A.; Tsudome, M.; Horikoshi, K. Facile generation of fullerene nanoparticles by hand-grinding. Adv. Mater., 2006, 18, 729-732
- Quaranta, A.; Zhang, Y.; Filippone, S.; Yang, J.; Sinay, P.; Rassat, A.; Edge, R.; Navaratnam, S.; McGarvey, D.; Land, E.J.; Brettreich, M.; Hirsch, A.; Bensasson, R.V. Photophysical studies of six amphiphilic 2:1 cyclodextrin:[60]fullerene derivatives. Chem. Phys., 2006, 325, 397–403
- Dhawan, A.; Taurozzi, J.S.; Pandey, A.K.; Shan, W.Q.; Miller, S.M.; Hashsham, S.A.; Tarabara, V.V. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ. Sci. Technol. 2006, 40, 7394–7401
- Deguchi, S.; Alargova, R.G.; Tsujii, K. Stable dispersions of fullerenes, C60 and C70, in water: preparation and characterization. Langmuir, 2001, 17, 6013–6017
- Lyon, D.Y.; Adams, L.K.; Falkner, J.C.; Alvarez, P.J. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol., 2006, 40, 4360-4366
- Brant, J.A.; Labille, J.; Bottero, J.Y.; Wiesner, M.R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 2006, 22, 3878–3885
- Shinohara, N.; Matsumoto, K.; Endoh, S.; Maru, J.; Nakanishi, J. In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol. Lett., 2009, 191, 289-296
- Seki, M.; Fujishima, S.; Gondo, Y.; Inoue, Y.; Nozaka, T.; Suemura, K.; Takatsuki, M. Acute toxicity of fullerene C60 in aquatic organism. Environ. Sci., 2008, 21, 53–62
- Cook, S.M.; Aker, W.G.; Rasulev, B.F.; Hwang, H.M.; Leszczynski, J.; Jenkins, J.; Shockley, V. Choosing safe dispersing media for C60 fullerenes by using cytotoxicity tests on the bacterium Escherichia coli. J. Hazard Mater., 2010, 176, 367-373
- Cho, M.; Fortner, J.D.; Hughes, J.B.; Kim, J.H. Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ. Sci. Technol., 2009, 43, 7410–7415
- Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem., 2003, 38, 913-923
- Brettreich, M.; Hirsch, A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 1998, 39, 2731-/2734
- Markovic, Z.; Todorovic-Markovic, B.; Kleut, D.; Nikolic, N.; Vranjes-Djuric, S.; Misirkic, M.; Vucicevic, L.; Janjetovic, K.; Isakovic, A.; Harhaji, L.; Babic-Stojic, B.; Dramicanin, M.; Trajkovic, V. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials, 2007, 28, 5437-5448
- Karkischenko, N.N. Nanosafly: new approaches to risk assessment and toxicity of nanomaterials. Biomedicine (Russ), 2009, #1, 5-27
- Nishimura, T.; Kubota, R.; Tahara, M.; Nagaoka-Hamano, M.; Shimizu, K.; Hirose, A.; Tokunaga, H. Biological effects of fullerene C60 in mouse embryonic stem cells. Toxicol. Lett., 2006, 164S, S214
- Morimoto, Y.; Hirohashi, M.; Ogami, A.; Oyabu, T.; Myojo, T.; Nishi, K.; Kadoya, C.; Todoroki, M.; Yamamoto, M.; Murakami, M.; Shimada, M.; Wang, W.; Yamamoto, K.; Fujita, K.; Endoh, S.; Uchida, K.; Shinohara, N.; Nakanishi, J.; Tanaka, I. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part. Fibre Toxicol., 2010, 7, 4-22
- Giust, D.; Leon, D.; Ballesteros-Yanez, I.; Da Ros, T.; Albasanz, J.L.; MartÃn, M. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem. Neurosci., 2011, 2, 363–369
- Trpkovic, A.; Todorovic-Markovic, B.; Kleut, D.; Misirkic, M.; Janjetovic, K.; Vucicevic, L.; Pantovic, A.; Jovanovic, S.; Dramicanin, M.; Marcovic, Z.; Trajkovic, V. Oxidative stress-mediated hemolytic activity og solvent exchange-prepared fullerene (C60) nanoparticles. Nanotechnol.,2010, 21, 375102
- Costa, C.L.A.; Chaves, I.S.; Ventura-Lima, J.; Ferreira, J.L.R.; Ferraz, L.; de Carvalho, L.; Monserrat, J.M. In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C60) in zebrafish hepatocytes. Comp. Biochem. Physiol. C, 2012, 155, 206-212
- Sayes, С.; Fortner, J.; Guo, W.; Lyon, D.; Boyd, A.; Ausman, K.; Tao, Y.; Sitharaman, B.; Wilson, L.; Hughes, J.; West, J.; Colvin, V. The differential cytotoxicity of water soluble fullerenes. Nano Lett., 2004, 4, 1881-1887
- Lai, Y.L.; Murugan, P.; Hwang, K.C. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci., 2003, 72, 1271-1278
- Kolesnichenko, A.V.; M.A.Timofeyev, M.A.; M.V.Protopopova, M.V. Toxicity of nanomaterials – 15 years of research. Russ. Nanotechnol. (Russ), 2008, 3, 54-61
- Hsu, H.C.; Chiang, Y.Y.; Chen, W.J.; Lee, Y.T. Water-soluble hexasulfobutyl-[60]-fullerene inhibits plasma lipid peroxidation by direct association with lipoproteins. J. Cardiovasc. Pharmacol., 2000, 36, 423-/427
- Lee, Y.T.; Chiang, L.Y.; Chen, W.J.; Hsu, H.C. Water-soluble hexasulfobutyl-[60]-fullerene inhibits low-density lipoprotein oxidation in aqueous and lipophilic phases. Proc. Soc. Exp. Biol. Med., 2000, 224, 69-75
- Hu, Z.; Guan, W.C.; Tang,X.Y.; Huang, L.Z.; Xu, H. Synthesis of water-soluble cystine C60 derivative with catalyst and its active oxygen radical scavenging ability. Chinese Chem. Lett., 2007, 18, 51-54
- Hu, Z.; Xing, H.P.; Zhu, Z.; Wang, W.; Guan, W.C. Synthesis of cystine C60 derivative and its protective effects on hydrogen peroxide-induced apoptosis in PC12 cells. Chinese Chem. Lett., 2007, 18, 145-148
- Hu, Z.; Guan, W.; Wang, W.; Huang, L.; Xing, H.; Zhu, Z. Protective effects of a novel cystine C60 derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells. Chem. Biol. Interact., 2007, 167, 135-144
- Hu, Z.; Guan, W.; Wang, W.; Huang, L.; Tang, X.; Xu, H.; Zhu, Z.; Xie, X.; Xing, H. Synthesis of amphiphilic amino acid C60 derivatives and their protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Carbon, 2008, 46, 99-109
- Hu, Z.; Guan, W.; Wang, W.; Zhu, Z.; Wang, Y. Folacin C60 derivative exerts a protective activity against oxidative stress-induced apoptosis in rat pheochromocytoma cells. Bioorg. Med. Chem. Lett., 2010, 20, 4159-4162
- Hu, Z.; Liu, S.; Wei, Y.; Tong, E.; Cao, F.; Guan, W. Synthesis of glutathione C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Neurosci. Lett., 2007, 429, 81–86
- Ali, S.S.; Hardt, J.I.; Quick, K.L.; Kim-Han, J.S.; Erlanger, B.F.; Huang, T.T.; Epstein, C.J.; Dugan, L.L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med., 2004, 37, 1191–1202
- Wang, I.C.; Tai, L.A.; Lee, D.D.; Kanakamm,P.P.; Shen, C.K.; Luh, T.Y.; Cheng, C.H.; Hwang, K.C. C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J. Med. Chem., 1999, 42, 4614-4620
- Guan, S.; Bao, Y.; Jiang, B.; An, L. Protective effect of protocatechuic acid from Alpinia oxyphyllaon hydrogen peroxide-induced oxidative PC12 cell death. Eur. J. Pharmacol., 2006, 538, 73-79
- Xiao, L.; H.Takada, H.; K.Maeda, K.; M.Haramoto, M.; N.Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacotherapy, 2005, 59, 351-358
- Tong, J.; Zimmerman, M.C.; Li, S.; Yi, X.; Luxenhofer, R.; Jordan, R.; Kabanov, A.V. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation. Biomaterials, 2011, 32, 3654-3665
- Alcaraz, M.J.; Megıґas, J.; Garcıґa-Arnandis, I.; Cleґ rigues, V.; Guilleґn, M.I. New molecular targets for the treatment of osteoarthritis. Biochem. Pharmacol., 2010, 80, 13–21
- Bal, R.; Turk, G.; Tuzcu, M.; Yilmaz, O.; Ozercan, I.; Kuloglu, T.; Gur, S.; Nedzvetsky, V.S.; Tykhomyrov, A.A.; Andrievsky, G.V.; Baydas, G.; Naziroglu, M. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology, 2011, 282, 69-81
- Zhu, L.; Chang, D.W.; Dai, L.; Hong, Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano. Lett., 2007, 3592-3597
- Xiao, L.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent. Free Radic. Biol. Med., 2011, 51, 1376–1389
- Mirkov, S.M.; Djordjevic, A.N.; Andric, N.L.; Andric, S.A.; Kostic, T.S.; Bogdanovic, G.M.; Vojinovic-Miloradov, M.B.; Kovacevic, R.Z. Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24. Nitric Oxide, 2004, 11, 201-207
- Injac, R.; Perse, M.; Obermajer, N.; Djordjevic-Milic, V.; Prijatelj, M.; Djordjevic, A.; Cerar, A.; Strukelj, B. Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials, 2008, 29, 3451–3460
- Bogdanovic, G.; Koji, V.; Dordevic, A.; Canadanovic-Brunet, J.; Vojinovic-Miloradov, M.; Balti, V.V. Toxicol. In Vitro, 2004, 18, 629-637. Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity
- Wielgus, A.R.; Zhao, B.; Chignell, C.F.; Hu, D.N.; Roberts, J.E. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol. Appl. Pharmacol., 2010, 242, 79-90
- Inui, S.; Aoshima, H.; Nishiyama, A.; Itami, S. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomed. Nanotechnol. Biol. Med., 2011, 7, 238-241
- Mori, T.; Ito, S.; Namiki, M.; Suzuki, T.; Kobayashi, S.; Matsubayashi, K.; Sawaguchi, T. Involvement of free radicals followed by the activation of phospholipase A2 in the mechanism that underlies the combined effects of methamphetamine and morphine on subacute toxicity or lethality in mice: Comparison of the therapeutic potential of fullerene, mepacrine, and cooling, Toxicology, 2007, 236, 149-157
- Cagle, D.W.; Kennel, S.J.; Mirzadeh, S.; Alford, J.M.; Wilson, L.J. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA, 1999, 96, 5182-5187
- Oberdorster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect., 2004, 112, 1058-1062
- Lao, F.; Chen, L.; Li, W.; Ge, C.; Qu, Y.; Sun, Q.; Zhao, Y.; Han, D.; Chen, C. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK related apoptosis. AcsNano, 2009, 3, 3358-3368
- Rouzer, C.A, Nanopoarticle tumorigenicity. Chem. Res. Toxicol., 2010, 23, 4-5
- Podolsky, I.Ya.; Kondratieva, E.V.; Scheglov, I.V.; Dumpis, M.A.; Piotrovsky, L.B. C60 with polyvinylpyrrolidone to prevent violation of the formation of long-term memory. Solid State Physics (Russ), 2002, 44, 552-559
- Zaporotskova, I.V.; Chernozatonskiy, L.A. The mechanism the positive effect of fullerene on the recovery of spatial memory, Bull. New Med. Technol.(Russ.), 2005, 12, 117-119
- Dugan, L.L., Lovett, E.G.; Quick, K.L.; Lotharius, J.; Lin, T.T.; O’Malley, K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinson. Relat. Disord., 2001, 7, 243-246
- Lin, J.; Wu, C. Surface characterization and platelet adhesion studies on polyurethane surface immobilized with C60. Biomaterials, 1999, 20, 1613-/1620
- Chen, T.; Li, Y.; Zhang, J.; Xu, B.; Lin, Y.; Wang, C.; Guan, W.; Wang, Y.; Xu, S. Protective effect of C60-methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J. Appl. Toxicol., 2011, 31, 255-261
- Linazasoro, G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinson. Relat. Disor., 2008, 14, 383-392
- Schloss, J.V.; Wu, J.Y. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res., 2000, 62, 600-607
- Lee, C.M.; Huang, S.T.; Huang, S.H.; Lin, H.W.; Tsai, H.P.; Wu, J.Y.; Lin, C.M.; Chen, C.T. C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomed. Nanotechnol. Biol. Med., 2011, 7, 107-114
- Szaraz, P.; Banhegyi, G.; Benedetti, A. Altered redox state of luminal pyridine nucleotides facilitates the sensitivity towards oxidative injury and leads to endoplasmic reticulum stress dependent autophagy in HepG2 cells. Int. J. Biochem. Cell Biol., 2010, 42, 157-166
- Hoyer-Hansen, M.; Bastholm, L.; Szyniarowski, P.; Campanella, M.; Szabadkai, G.; Farkas, T. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell, 2007, 25, 193-205
- Lu, T.; Kao, P.; Lee, C.; Huang, S.; Lin, C. C60 Fullerene nanoparticle prevents β-amyloid peptide induced cytotoxicity in neuro 2A cells. J. Food Drug Anal., 2011, 19, 151-158
- Podolski, I.Y.; Podlubnaya, Z.A.; Kosenko, E.A.; Mugantseva, E.A.; Makarova, E.G.; Marsagishvili, L.G. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J. Nanosci. Nanotechnol., 2007, 7, 1479-1485
- Brambilla, D.; Droumaguet, B.L.; Nicolas, J.; Hashemi, S.H.; Wu, L.P.; Moghimi, S.M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomed.: Nanotechnol. Biol. Med., 2011, 7, 521-540
- Lin, A.M.; Yang, C.H.; Ueng, Y.; Luh, T.Y.; Liu, T.Y.; Lay, Y.P.; Ho, L.T. Differential effects of carboxyfullerene on MPP+/MPTP-induced neurotoxicity. Neurochem. Int., 2004, 44, 99-105
- Hartig, W.; Paulke, B.R.; Varga, C.; Seeger, J.; Harkany, T.; Kacza, J. Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting betaamyloid in Alzheimer’s disease. Neurosci. Lett., 2003,. 338, 174-176
- Gross, C.G. Neurogenesis in the adult brain: death of a dogma. Nature Rev. Neurosci., 2000, 1, 67-72
- Lebovits, R.; Rosenblum, M. Substuted fullerenes and their use as inhibitors of cell death. US Patent, #0197950 A1, 2009
- Friedman, S.H.; De Camp, D.L., Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc., 1993, 115, 6506-6509
- Park, K.H.; Chhowalla, M.; Iqbal, Z.; Sesti, F. Single-walled carbon nanotubes are a new class of ion channel blockers. J. Biol. Chem., 2003, 278, 50212-50216
- Redmill, P.S.; McCabe, C. Molecular dynamics study of the behavior of selected nanoscale building blocks in a gel-phase lipid bilayer. J. Phys. Chem. B, 2010, 114, 9165-9172
- Kraszewski, S.; Tarek, M.; Treptow, W.; Ramseyer, C. Affinity of C60 neat fullerenes with membrane proteins: a computational study on potassium channels. ACSNano, 2010, 4, 4158–4164
- Orlova, M.A.; Osipova, E.Y.; Roumiantsev, S.A. Effect of 67Zn-nanoparticles on leukemic cells and normal lymphocytes. Br. J. Med. Med. Res., 2012, 2, 21-30
- Andreev, I.; Petrukhina, A.; Garmanova, A.; Babakhin, A.; Andreev, S.; Romanova, V.; Troshin, P.; Troshina, O.; DuBuske , L. Penetration of fullerene C60 derivatives through biological membranes. Fullerenes Nanotubes & Carbon Nanostructures, 2008, 16, 89-102
- Hsu, S.; Chien, C. Forced expression of Bcl-2 and Bcl-X(L) by novel water-soluble fullerene, C-60(glucosamine)(6), reduces renal ischemia/reperfusion-induced oxidative stress. Fullerene Sci. Technol., 2001, 9, 77-88
- Cha, Y.J.; Lee, J.; Choi, S.S. Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere, 2012, 87, 49-54
- Johnson, G.L.; Lapadat, R.L. Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science, 2002, 298, 1911-1912
- Fatkhutdinova, L.M.; Khaliullin, T.O.; Zalyalov, R.R. Toxicity of engineered nanoparticles. Kazanskii Med. J. (Russ.), 2009, 90, 578-584
- Manna, S.K.; Sarkar, S.; Barr, J.; Wise, K.; Barrera, E.V.; Jejelowo, O.; Rice-Ficht,| A.C.; Ramesh, G.T. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett., 2005, 5, 1676-1684
- Yudoh, K.; Karasawa, R.; Masuko, K.; Kato, T. Water-soluble fullerene (C60) inhibits the osteoclast differentiation and bone destruction in arthritis. Int. J. Nanomed., 2009, 4, 233-239
- Okada, T.; Otani, H.; Wu, Y.; Kyoi, S.; Enoki, C.; Fujiwara, H.; Sumida, T.; Hattori, R.; Imamura, H. Role of F-actin organization in p38 MAPkinase-mediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation. Am. J. Physiol. Heart Circ. Physiol., 2005, 289, H2310–H2318
- Luschen, S.; Scherer, G.; Ussat, S.; Ungefroren, H.; Adam-Klages, S. Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kB, elicits caspase activity, and enhances cytotoxicity. Exp. Cell Res., 2004, 293, 196–206
- Straface, E.; Natalini, B.; Monti, D.; Franceschi, C.; Schettini, G.; Bisaglia, M.; Fumelli, C.; Pincelli, C.; Pellicciari, R.; Malorni, W. C3-Fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett., 1999, 454, 335-340
- Johnson-Lyles, D.N.; Peifley, K.; Lockett, S.; Neun, B.W.; Hansen, M.; Clogston, J.; Stern, S.T.; McNeil, S.M. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol. Appl. Pharmacol., 2010, 248, 249-258
- Rebecca, M.; Hsing-Lin, W.; Jun, G.; Srinivas, I.; Gabriel, M.A.; Jennifer, M.; Andrew, S.P.; Yuping, B.; Chun-Chih, W.; Zhong, C.; Yuan, G.; Rashi, I. Impact of physicochemical properties of engineered fullerenes on key biological responses. Toxicol. Appl. Pharmacol., 2009, 234, 58-67
- Zogovic, N.S.; Nikolic, N.S.; Vranjes-Djuric, S.D.; Harhaji, L.M.; Vucicevic, L.M.; Janjetovic, K.D.; Misirkic, M.S.; Todorovic-Markovic, B.M.; Markovic, Z.M.; Milonjic, S.K.; Trajkovic, V.S. Opposite effects of nanocrystalline fullerene (C60) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C60. Biomaterials, 2009, 30, 6940-6946
- Huang, Y.L.; Shen, C.K.F.; Luh, T.Y.; Yang, H.C.; Hwang, K.C.; Chou, C.K. Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxy-fullerene. Eur. J. Biochem., 1998, 254, 38-43
- Hsu, S.C.; Wu, C.C.; Luh, T.Y.; Chou, C.K.; Han, S.H.; Lai, M.Z. Apoptotic signal of Fas is not mediated by ceramide. Blood, 1998, 91, 2658-2663
- Li, W.; Zhao, L.; Wei, T.; Zhao, Y.; Chen, C. The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials, 2011, 32, 4030-4041
- Nakagawa, Y.; Suzuki, T.; Ishii, H.; Nakae, D.; Ogata, A. Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch. Toxicol., 2011, 85, 1429-1440
- Rouse, J.G.; Yang, J.Z.; Barron, A.R.; Monteiro-Riviere, N.A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. in Vitro, 2006, 20, 1313-1320
- Huang, S.T.; Liao, J.S.; Fang, H.W.; Lin, C.M. Synthesis and anti-inflammation evaluation of new C60fulleropyrrolidines bearing biologically active xanthine. Bioorg. Med. Chem. Lett., 2008, 18, 99-103
- Gelderman, M.P.; Simakova, O.; Clogston, J.D.; Patri, A.K.; Siddiqui, S.F.; Vostal, A.C.; Simak, J. Adverse effects of fullerenes on endothelial cells: Fullerenol C60(OH)24 induced tissue factor and ICAM-1 membrane expression and apoptosis in vitro. Int. J. Nanomed., 2008, 3, 59-68
- Zhu, J.; Ji, Z.; Wang, J.; Sun, R.; Zhang, X.; Gao, Y.; Sun, H.; Liu, Y.; Wang, Z.; Li, A.; Ma, J.; Wang, T.; Jia, G.; Gu, Y. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small, 2008, 4, 1168–1175
- Harhaji, L.; Isakovic, A.; Vucicevic, L.; Janjetovic, K.; Misirkic, M.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Nikolic, Z,; Trajkovic, V. Modulation of tumor necrosis factor-mediated cell death by fullerenes. Pharm. Res., 2008, 25, 1365-1376
- Liu, R.L.; Cai, X.Q.; Wang, J.D.; Li, J.G.; Huang, Q.; Li, W.X. Research on the bioactivities of C60-dexamethasone. J. Nanosci. Nanotechnol., 2009, 9, 3171–3176
- Yang, D.; Zhao, Y.; Guo, H.; Li, Y.; Tewary, P.; Xing, G.; Hou, W.; Oppenheim, J.J.; Zhang, N. [Gd@C82(OH)22]n Nanoparticles induce dendritic cell maturation and activate Th1 immune responses. AcsNano, 2010, 4, 1178–1186
- Misirkic, M.S.; Todorovic-Markovic, B.M.; Vucicevic, L.M.; Janjetovic, K.D.; Jokanovic, V.R.; Dramicanin, M.D.; Markovic, Z.M.; Trajkovic, V.S. The protection of cells from nitric oxide-mediated apoptotic death by mechanochemically synthesized fullerene (C60) nanoparticles. Biomaterials, 2009, 30, 2319-2328
- Xu, A.; Chai, Y.; Nohmi, T.; Hei, T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol., 2009, 6, 3-16
- Ciacci, L.C.C.; Vallottoc, D.; Galloa, G.; Marcominic, A.; Pojanac, G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicol., 2010, 96, 151-158
- Fiorito, S.; Serafino, A.; Andreola, F.; Bernier, P. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon, 2006, 44, 1100-1105.
- Hu, Z.; Huang , Y.; Guan , W.; Zhang , J.; Wang , F.; Zhao, L. The protective activities of water-soluble C60 derivatives against nitric oxide-induced cytotoxicity in rat pheochromocytoma cells. Biomaterials , 2010, 31, 8872-8881
- Huang, S.S.; Tsai, S.K.; Chin, C.L.; Chiang, L.Y.; Hsieh, H.M.; Teng, C.M.; Tsai, M.C. Neuroprotective effect of hexasulfobutylated C60 on rats subjected to focal cerebral ischemia. Free Rad. Biol. Med., 2001, 30, 643-649
- Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Guyader, L.L.; Gao, G.; Liu, R.S.; Chang, Y.Z.; Chen, C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, 2012, 33, 402-411.
- Kotelnikova, R.A.; Kotelnikov, A.I.; Bogdanov, G.N.; Romanova, V.S.; Kuleshova, E.F.; Parnes, Z.N. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60. FEBS Lett., 1996, 389, 111-114
- Chen, Y.W.; Hwang, K.C.H.; Yen, C.C.; Lai, Y.L. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am. J. Physiol., 2004, 287, 21-26
- Chien, C.T.; Chen, C.F.; Hsu, S.M.; Chiang, L.Y.; Lai, M.K. Forced expression of bcl-2 and bcl-xL by novel water-soluble fullerene, C60(glucosamine)6, reduces renal ischemia/reperfusion-induced oxidative stress. Fuller Nanotub Car., 2001, 9, 77-88
- Bisaglia, M.; Natalini, B.L.; Pellicciari, R.; Straface, E.; Malorni, W.; Monti, D. Carboxyfullerenes as neuroprotective agents C3-fullerotris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J. Neurochem., 2000, 74, 1197-1204
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311, 622-627
- Maynard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdorster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V. Safe Handling of Nanotechnology. Nature, 2006, 444, 267-269
- Calvaresi, M.; Zerbetto, F. Baiting Proteins with C60. AcsNano. 2010, 4, 2283–2299
- Da Ros, T.; M.Prato, M.; F.Novello, F.; M.Maggini, M.; E.Banfi, E. Easy acess to water-soluble fullerene derivatives via 1,3-dipolar cycloadditions of azomethine ylides to C60. J. Org. Chem., 1996, 61, 9070-9072
- Jin, H.; Chen, W.Q.; Tang, X.W.; Chiang, L.Y.; Yang, C.Y.; Schloss, J.V.; Wu, J.Y. Polyhydroxylated C60, Fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res., 2000, 62, 600-607
- Boutorine, A.S.; Tokuyama, H.; Takasugi, M.; Isobe, H.; Nakamura, E.; Helene, C. Fullerene-oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew. Chem. Int. Ed., 1994, 33, 2426-2465
- Kim, J.E.; Lee, M. Fullerene inhibits β-amyloid peptide aggregation. Biochem. Biophys. Res. Commun., 2003, 303, 576-579
- Gupta, S.; Dhawan, A.; Shanker, R. In silico approaches: prediction of biological targets for fullerene derivatives. J. Biomed. Nanotechnol., 2011, 7, 91-92
- Wolff, D.J.; Barbieri, C.M.; Richardson, C.F.; Schuster, D.I.; Wilson, S.R. . Trisamine C60-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonists. Arch. Biochem. Biophys., 2002, 399, 130-141
- Mashino, T.; Okuda, K.; Hirota, T.; Hirobe, M.; Nagano, T.; Mochizuki, M. Inhibitory effect of fullerene derivatives on glutathione reductase. Fullerene Sci. Technol., 2001, 9, 191-196
- Marcorin, G.L.; Da Ros, T.; Castellano, S.; Stefancich, G.; Bonin, I.; Miertus, S.; Prato, M. Design and synthesis of novel [60]fullerene derivatives as potential HIV aspartic protease inhibitors. Org. Lett., 2000, 2, 3955-3958
- Schuster, D.I.; Wilson, S.R.; Schinazi, R.F, Anti-human immunodeficiency virus activity and cytotoxicity of derivatized Buckminsterfullerenes. Bioorg. Med. Chem. Lett., 1996, 6, 1253-1256
- Braden, B.C.; Goldbaum, F.A.; Chen, B.X.; Kirschner, A.N.; Wilson, S.R.; Erlanger, B.F. X-Ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C60. Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 12193-12197
- Rozhkov, S.P.; Goryunov, A.S.; Sukhanova, G.A.; Borisova, A.G.; Rozhkova, N.N.; Andrievsky, G.V. Protein interaction with hydrated C60 fullerene in aqueous solutions. Biochem. Biophys. Res. Commun., 2003, 303, 562-566
- Belgorodsky, B.; Fadeev, L.; Kolsenik, J.; Gozin, M. Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein. ChemBioChem., 2006, 7, 1783-1789
- Belgorodsky, B.; Fadeev, L.; Ittah, V.; Benyamini, H.; Zelner, S.; Huppert, D.; Kotlyar, A.B.; Gozin, M. Formation and characterization of stable human serum albumin-tris-malonic acid [C60]fullerene complex. Bioconjugate Chem., 2005, 16, 1058-1062
- Yang, S.T.; Wang, H.; Guo, L.; Gao, Y.; Liu, Y.; Cao, A. . Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology, 2008, 19, 395-401
- Benyamini, H.; Shulman-Peleg, A.; Wolfson, H.J.; Belgorodsky, B.; Fadeev, L.; Gozin, M. Interaction of C60-fullerene and carboxyfullerene with proteins: docking and binding site alignment. Bioconjugate Chem., 2006, 17, 378-386
- Zhang, X.F.; Shu, C.Y.; Xie, L.; Wang, C.; Zhang, Y.Z.; Xiang, J.F.; Li, L.; Tang, Y.L. Protein conformation changes induced by a novel organophosphate-containing water-soluble derivative of a C60 fullerene nanoparticle. J. Phys. Chem. C, 2007, 111, 14327-14333
- Belgorodsky, B.; Fadeeva, L.; Kolsenik, J.; Gozin, M. Biodelivery of a fullerene derivative. Bioconjugate Chem., 2007, 18, 1095-1100
- Ueng, T.H.; Kang, J.J.; Wang, H.W.; Cheng, Y.W.; Chiang, L.Y. Suppression of microsomal cytochrome P450-Dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol. Lett., 1997, 93, 29-37
- Pastorin, G.; Marchesan, S.; Hoebeke, J.; Da Ros, T.; Ehret-Sabatier, L.; Briand, J.P.; Prato, M.; Bianco, A. Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesteras. Org. Biomol. Chem., 2006, 4, 2556-2562
- Innocenti, A.; Durdagi, S.; Doostdar, N.; Strom, T.A.; Barron, A.R.; Supuran, C.T. Nanoscale enzyme inhibitors: fullerenes inhibit carbonic anhydrase by occluding the active site entrance. Bioorg. Med. Chem., 2010, 18, 2822–2828
- Iwata, N.; T.Mukai, T.; Y.N.Yamakoshi, Y.N.; S.Hara, S.; T.Yanase, T.; M.Shoji, M.; T.Endo, T.; N.Miyata, N. Effect of C60, a fullerene, on the activities of glutathione S-transferase and glutathion-related enzymes. Fullerenes, Nanotubes & Carbon Nanostructures, 1998, 6, 213-226
- Marczak, R.; Hoang, V.T.; Noworyta, K.; Zandler, M.E.; Kutner, W.; D’Souza, F. Molecular recognition of adenine, adenosine and ATP at the air–water interface by a uracil appended fullerene. J. Mater. Chem., 2002, 12, 2123–2129
- Ito, M.; Nakashima, N. Design, synthesis and photophysical properties of C60-modified proteins. J. Mater. Chem., 2002, 12, 2026-2033
- Szeltukhin, A.O., Chumakov, P.M. Casual and induced functions of p53 gene. Success of Biol. Chem. (Russ.), 2010, 50, 447-516
- Liang, Y.; Luo, F.; Lin, Y.; Zhou, Q.F.; Jiang, G.B. C60 affects DNA replication in vitro by decreasing the melting temperature of DNA templates. Carbon, 2009, 47, 1457–1465
- Kang, F.; Song, G.G. Inhibition of Taq DNA polymerase and DNA exonuclease ExoIII by an aqueous nanoparticle suspension of a bis-methanophosphonate fullerene. Mater. Sci. Forum, 2011, 685, 345-351
- An, H.; Jin, B. DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. Environ. Sci. Technol., 2011, 45, 6608–6616
- Rohs, R.; West, S.M.; Sosinsky, A.; Liu, P.; Mann, R.S.; Honig, B. The role of DNA shape in protein-DNA recognition. Nature, 2009, 461, 1248–1253
- Pinteala, M.; Dascalu, A.; Ungurenasu, C. Binding fullerenol C60(OH)24 to dsDNA. Int. J. Nanomed., 2009, 4, 193-199
- Li, J.; Zhang, M.; Sun, B.; Xing, G.; Song, Y.; Guo, H.; Chang, Y.; Ge, Y.; Zhao, Y. Separation and purification of fullerenols for improved biocompatibility. Carbon, 2012, 50, 460-469
- Tanimoto, S.; Sakai, S.; Matsumura, S.; Takahashi, D.; Toshima, K. Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid. Chem. Commun., 2008, 5767-5769
- Durdagi, S.; Mavromoustakos, T.; Chronakis, N.; Papadopoulos, M.G. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Bioorg. Med. Chem., 2008, 16, 9957-9974
- Bosi, S.; Da Ros, T.; Spalluto, G.; Balzarini, J.; Prato, M. Synthesis and anti-HIV properties of new water-soluble bis-functionalized [60]fullerene derivatives. Bioorg. Med. Chem. Lett., 2003, 13, 4437-4440
- Marchesan, S.; Da Ros, T.; Spalluto, G.; Balzarini, J.; Prato, M. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 3615–3618
- Mashino, T.; Shimotohno, K.; Ikegami, N.; Nishikawa, D.; Okuda, R.; Takahashi, R.; Nakamura, S.; Mochizuki, M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 1107-1109
- Ungurenasu, C.; Pinteala, M. Syntheses and characterization of water-soluble C-60-Curdlan sulfates for biological applications. J. Polym. Sci. Polym. Chem., 2007, 45, 3124–3128
- Lehtovaara, B.C.; Gu, F.X. Pharmacological, structural, and drug delivery properties and applications of 1,3-β-glucans. J. Agric. Food Chem., 2011, 59, 6813–6828
- Shimanovsky, N.S. Nanotechnologies in contemporary pharmacology. Int. Med. J. (Russ.), 2009, â„–1, 131-135
- Fujita, K.; Morimoto, Y.; Ogami, A.; Myojyo, T.; Tanaka, I.; Shimada, M.; Wang, W.; Endoh, S.; Uchida, K.; Nakazato, T.; Yamamoto, K.; Fukui, H.; Horie, M.; Yoshida, Y.; Iwahashi, H.; Nakanishi, J. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology, 2009, 258, 47-55
- Fujita, K.; Morimoto, Y.; Endoh, S.; Uchida, K.; Fukui, H.; Ogami, A.; Tanaka, I.; Horie, M.; Yoshida, Y.; Iwahashi, H.; Nakanishi, J. Identification of potential biomarkers from gene expression profiles in rat lungs intratracheally instilled with C60 fullerenes. Toxicology, 2010, 274, 34-41
- Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.N. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006, 6, 1794–1807
- Jacobsen, N.R.; Pojana, G.; White, P.; Møller, P.; Cohn, C.A.; Korsholm, K.S.; Vogel, U.; Marcomini, A.; Loft, S.; Wallin, H. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta™Mouse lung epithelial cells. Environ. Mol. Mutagen., 2008, 49: 476–487
- Jovanovic, B.; Ji, T.; Palic, D. Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol. Environ. Safety, 2011, 74, 1518–1525
- Park, E.J.; Kim, H.; Kim, Y.; Yi, J.; Choi, K.; Park, K. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol. Appl. Pharmacol., 2010, 244, 226-233
- Kaidashev, I.P. Influence of C60 fullerene on activity of phagocitic cells. Exp. Clinic. Pharmacol. (Russ.), 2011, #6, 26-29
- Xu, Y.; Zhu, J.; Xiang, K.; Li, Y.; Sun, R.; Ma, J.; Sun, H.; Liu, Y. Synthesis and immunomodulatory activity of [60]fullerene-tuftsin conugates. Biomaterials, 2011, 32(36), 9940-9949
- Vengerovich, N.G.; Tunin, M.A.; Antonenkova, E.V.; Konshakov, Yu.A.; Bolekhan, A.V.; Zaitseva, O.B.; Stukov, A.N.; Boyarkin, M.N.; Popov, V.A.. Biological activity of nanobiocomposites fullerene C60. Immonology (Russ), 2011, 12, 161-177
- Romoser, A.A.; Figueroa, D.E.; Sooresh, A.; Scribner, K.; Chen, P.L.; Porter, W.; Criscitiello, M.F.; Sayes, C.M. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol. Lett., 2011, 6, 7-34
- Mrdanovic, J.; Solajic, S.; BogdanoviÑ, V.; Stankov, K.; Bogdanovic, G.; Djordjevic, A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutation Res., 2009, 680, 25-30
- Nielsen, G.D.; Roursgaard, M.; Jensen, K.A.; Poulsen, S.S.; Larsen, S.T. Biology and toxicology of fullerenes and their derivatives. Basic Clin. Pharmacol. Toxicol., 2008, 103, 197–208
- Jalbout, A.F.; Hameed, A.J.; Trzaskowski, B. Study of the structural and electronic properties of 1-(4, 5 and 6-selenenyl derivatives-3-formyl-phenyl) pyrrolidinofullerenes, J. Organometal. Chem., 2007, 692, 1039-1047
- Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.; Ge, C.; Li, Y.; Sun, B.; Chen, C Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model, Carbon, 2010, 48, 2231-2243
- Nishizawa, C.; Hashimoto, N.; Yokoo, S.; Funakoshi-Tago, M.; Kasahara, T.; Takahashi, K.; Nakamura, S.; Mashino, T. Pyrrolidinium-type fullerene derivative-induced apoptosis by the generation of reactive oxygen species in HL-60 cells, Free Radic. Res., 2009, 43, 1240–1247
- Wang, J.; C.Chen, C.; B.Li, B.; H.Yu, H.; Y.Zhao, Y.; J.Sun, J.; Y.Li, Y.; G.Xing, G.; H.Yuan, H.; J.Tang, J.; Z.Chen, Z.; H.Meng, H.; Y.Gao, Y.; C.Ye, C.; Z.Chai, Z.; C.Zhu, C.; B.Ma, B.; X.Fang, X.; L.Wanc, L. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice, Biochem. Pharmacol., 2006, 71, 872-881
- Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Qu, Y.; Li, Y. Immunostimulatory properties and enhanced TNF-a mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles, Nanotechnology, 2009, 20, 415102-415111
- Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Lao, F.; Zhou, G.Q. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 2009, 30, 3934-3945
- Meng, H.; Xing, G.; Sun, B.; Zhao, F.; Lei, H.; Li, W.; Song, Y.; Chen, Z.; Yuan, H.; Wang, X.; Long, J.; Chen, C.; Liang, X.; Zhang, N.; Chai, Z.; Zhao, Y. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. Acs Nano, 2010, 4, 2773-2783
- Darwish, A.D. Fullerenes, Annu. Rep. Prog. Chem., A, 2009, 105, 363–381
- Prylutska, S.; Burlaka, A.P.; Klymenko, P.P.; Grynyuk, I.I.; Prylutskyy, Yu.I.; Schütze, C.; Ritter, U. Using water-soluble C60 fullerenes in anticancer therapy, Cancer Nanotechnol., 2011, 2, 105-110
- Kharisov, B.I.; Kharissova, O.V.; Gomez, M.J.; Mendez, U.O. Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines, Ind. Eng. Chem. Res., 2009, 48, 545–571
- Darwish, A.D. Fullerenes, Annu. Rep. Prog. Chem., A, 2007, 103, 370–391
- Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug. Chem., 2001, 12, 510-514
- Li, Q.; Xiu, Y.; Zhang, X.; Liu, R.; Du, Q.; Sun, X.; Chen, S.; Li, W. Biodistribution of fullerene derivative C60(OH)x(O)y, Chinese Sci. Bull., 2001, 46, 1615-1617
- Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S.; Sun, Y.P. Fullerene-conjugated doxorubicin in cells, Acs Appl. Mater. Interf., 2010, 2, 1384-1389
- Wei, P.; Zhang, L.; Lu, Y.; Man, N.; Wen, L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy, Nanotechnol., 2010, 21, 495101
- Montellano, A.; Da Ros , T.; Bianco, A.; Prato, M. Fullerene C60 as a multifunctional system for drug and gene delivery, Nanoscale, 2011, 3, 4035-4044
- Rancan, F.; Helmreich, M.; Molich, A.; Jux, N.; Hirsch, A.; Roder, B.; Witt, C.; Bohm, F. Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: uptake and photo-induced cytotoxicity on Jurkat cells, J. Photochem. Photobiol. B, 2005, 80, 1-7
- Boyd, P.D.; Hodgson, M.C.; Rickard, C.E.F.; Oliver, A.G.; Chaker, L.; Brothers, P.J.; Bolskar, R.D.; Tham, F.S.; Reed, C.A. Selective supramolecular porphyrin/fullerene interactions, J. Am. Chem. Soc. 1999, 121, 10487-10495
- Sun, Y.; Drovetskaya, T.; Bolskar, R.D.; Bau, R.; Boyd, P.D.; Reed, C.A. Fullerides of pyrrolidine-functionalized C60, J. Org. Chem., 1997, 62, 3642-3649
- Imahori, H.; Mori, Y.; Matano, Y. . Nanostructured artificial photosynthesis, J. Photochem. Photobiol., C, 2003, 4, 51-83
- Da Ros, T.; Prato, M.; Guldi, D.M.; Ruzzi, M.; Pasimeni, L. Efficient charge separation in porphyrin-fullerene-ligand complexes, Chemistry, 2001, 7, 816-827
- Nishiyama, N.; Stapert, H.R.; Zhang, G.D.; Takasu, D.; Jiang, D.L.; Nagano, T.; Aida, T.; Kataoka, K. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy, Bioconjugate Chem., 2003, 14, 58-66
- Dudic, M.; Lhotak, P.; Stibor, I.; Petrıckova, H.; Lang K. . (Thia)calyx[4]arene-porphyrin conjugates: novel receptors for fullerene complexation with C70 over C60 selectivity, New J. Chem., 2004, 28, 85-90
- Hirsch. A. The Chemistry of Fullerenes. Thieme-Verlag, Stuttgart; New York, 1994
- Rezayat, S.M.; Boushehri, S.V.S.; Salmanian, B.; Omidvari, A.H.; Tarighat, S.; Esmaeili, S.; Sarkar, S.; Amirshahi, N.; Alyautdin, R.N.; Orlova, M.A.; Trushkov, I.V.; Buchachenko, A.L.; Liu, K.C.; Kuznetsov, D.A. The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect, Eur. J. Med. Chem., 2009, 44, 1554-1569
- Buchachenko, A.L.; Kuznetsov, D.A.; Breslavskaya, N.N.; Orlova, M.A. Magnesium Isotope Effect in Enzymatic Phosphorylation, J. Phys. Chem. B, 2008, 112, 2548-2556
- Nikolic, N.; Vranjes-Ethuric, S.; Jankovic, D.; Ethokic, D.; Mirkovic, M.; Bibic, N.; Trajkovic, V. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals, Nanotechnol., 2009, 20, 385102.
- Ikeda, A.; Doi, Y.; Nishiguchi, K.; Kitamura, K.; Hashizume, M.; Kikuchi, J.; Yogo, K.; Ogawa, T.; Takey, T. Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene, Org. Biomol. Chem., 2007, 5, 1158–1160
- Wang, H.; Wang, L.; Wang, X.; Xu, J.; Luo, Q.; Liu J. Self-assembled nanostructures from C60-containing supramolecular complex: its stimuli-responsive reversible transition and biological antioxidative capacity, New J. Chem., 2011, 35, 2632-2638
- Akiyama, M.; Ikeda, A.; Shintani, T.; Doi, Y.; Kikuchi, J.; Ogawa, T.; Yogo, K.; Takeya, T.; Yamamoto, N. Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities, Org. Biomol. Chem., 2008, 6, 1015-1019
- Zhou, Z.; Lenk, R.P.; Dellinger, A.; Wilson, S.R.; Sadler, R.; Kepley, C.L. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconj. Chem. 2010, 21, 1656–1661
- Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R.A.; Sengupta, S. Fullerenol-cytotoxic conjugates for cancer chemotherapy, ACS Nano, 2009, 3, 2505–2514
- Song, H.; Luo, S.; Wei, H.; Song, H.; Yang, Y.; Zhao, W. In vivo biological behavior of 99mTc(CO)3 labelled fullerol, J. Radioanal. Nucl. Chem., 2010, 285, 635-639
- Roberts, J.E.; Wielgus, A.R.; Boyes, W.K.; Andley, U.; Chignell, C.F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells, Toxicol. Appl. Pharmacol., 2008, 228, 49-58
- Zhao, B.; Yin, J.J.; Bilski, P.; Chignell, C.F.; Roberts, J.E.; He, Y.Y. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles, Toxicol. Appl. Pharmacol., 2009, 241, 163–172
- Prow, T.W.; Bhutto, I.; Kim, S.Y.; Grebe, R.; Merges, C.; McLeod, D.S.; Uno, K.; Mennon, M.; Rodriguez, L.; Leong, K.; Lutty, G.A. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium, Nanomedicine, 2008, 4, 340–349
- Bejjani, R.A.; BenEzra, D.; Cohen, H.; Rieger, J.; Andrieu, C.; Jeanny, J.C.; Gollomb, G.; Behar-Cohen, F.F. Nanoparticles for gene delivery to retinal pigment epithelial cells, Mol. Vis., 2005, 17, 124–132
- Yang, X.Y.; Edelmann, R.E.; Oris, J.T. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna, Aquatic Toxicol., 2010, 100, 202-210
- Mroz, P.; Tegos, G.P.; Gali, H.; Wharton, T.; Sarna, T.; Hamblin, M.R. Photodynamic therapy with fullerenes, Photochem. Photobiol. Sci., 2007, 6, 1139–1149
- Burlaka, A.P.; Sidorik, U.P.; Prylutska, S.V. Catalytic system of the reactive oxygen species on the C60 fullerene basis, Exp. Oncol., 2004, 26, 326-327
- Meshalkin, Y.P.; Bgatova, N.P. Prospects and problems of the use of inorganics nanoparticles in oncology, J. Siber. Fed. Univ. B. (Russ.) 2008, 3, 248-268
- Mroz, P.; Pawlak, A.; Satti, M. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radical Biol. Med., 2007, 43, 711-719
- Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S.; Ikeda, A.; Kataoka, H.; Tanaka, M.; Joh, T. . Current states and future views in photodynamic therapy, J. Photochem. Photobiol. C, 2011, 12, 46– 67
- Hu, Z.; Zhang, C.; Huang, Y.; Sun, S.; Guan, W.; Yao Y. Photodynamic anticancer activities of water-soluble C60 derivatives and their biological consequences in a HeLa cell line, Chem.-Biol. Inter., 2012, 195, 86-94
- Ion, R.M.; Fierascu, R.C.; Neagu, M.; Constantin, C.; Stavaru, C. Porphyrin (TPP)–polyvinylpyrrolidone (PVP)–fullerene (C60) triad as novel sensitizer in photodynamic therapy, Sci. Adv. Mater., 2010, 2, 223-229
- Liao, F.; Saitoh, Y.; Miwa, N. Anticancer effects of fullerene [C60] included in polyethylene glycol combined with visible light irradiation through ROS generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts, Oncol. Res. Feat. Preclin. Clin. Cancer Therap., 2011, 19, 203-216
- Liu, J.; Ohta, S.; Sonoda, A. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy, J. Controlled Release, 2007, 117, 104-110
- Jiang, G.; Li, G. Preparation, characterization, and properties of fullerene–vinylpyrrolidone copolymers, Biotechnol. Prog., 2012, 28, 215-222
- Vileno, B.; Jeney, S.; Sienkiewicz, A.; Marcoux, P.R.; Miller, L.M.; Forró, L. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols, Biophys. Chem., 2010, 152, 164-169
- Badireddy, A.R.; Hotze, E.M.; Chellam, S.; Alvarez, P.; Wiesner, M.R. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles, Environ. Sci. Technol., 2007, 41, 6627-6632
- Taroni, P.; D’Andrea, C.; Valentini, G.; Cubeddu, R.; Hu, D.N.; Roberts, J.E. Fullerol in human lens and retinal pigment epithelial cells: time domain fluorescence spectroscopy and imaging, Photochem. Photobiol. Sci., 2011, 10, 904–910
- Vileno, B.; Marcoux, P.R.; Lekka, M.; Sienkiewicz, A.; Feher, T.; Forró, L. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol, Adv. Funct. Mater., 2006, 16, 120-128
- Sienkiewicz, A.; Vileno, B.; Pierzchała, K.; Czuba, M.; Marcoux, P.R.; Graczyk, A.; Fajer, P.G.; Forró, L. . Oxidative stress-mediated protein conformation changes: ESR study of spin-labelled staphylococcal nuclease, J. Phys. Condens. Matter, 2007, 19, 285201
- Straface, E.; Santini, M.T.; Donelli, G.; Giacomoni, P.U.; Malorni, W. Vitamin E prevents UVB-induced cell blebbing and cell death in A431 epidermoid cells, Int. J. Rad. Biol., 1995, 68, 579-587
- Ito, S.; Itoga, K.; Yamato, M.; Akamatsu, H.; Okano, T. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin, Toxicology, 2010, 267, 27-38
- Kato, S.; Kikuchi, R.; Aoshima, H.; Saitoh, Y.; Miwa, N. Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60, J. Photochem. Photobiol. B., 2010, 98, 144-151
- Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Fullerene-C60/liposome complex: Defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue, J. Photochem. Photobiol. B, 2010, 98, 99-105
- Fumelli, C.; Marconi, A.; Salvioli, S.; Straface, E.; Malorni, W.; Offidani, A.M.; Pellicciari, R.; Schettini, G.; Giannetti, A.; Monti, D.; Franceschi, C.; Pincelli, C. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis, J. Invest. Dermatol., 2000, 115, 835–841
- Kato, S.; Ajshima, H.; Saitoh, Y.; Miwa, N. Fullerene-C60 Incorporated in Liposome Exerts Persistent Hydroxyl Radical-Scavenging Activity and Cytoprotection in UVA/B-Irradiated Keratinocytes, J. Nanosci. Nanotechnol., 2011, 11, 3814-3823
- Saitoh, Y.; Miyanishi, A.; Mizuno, H.; Kato, S.; Aoshima, H.; Kokubo, K.; Miwa, N. Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages (2011), J. Photochem. Photobiol. B, 2011, 102, 69-76
- Zhao, B.; He, Y.Y.; Chignell, C.F.; Yin, J.J.; Andley, U.; Roberts, J.E. Difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells, Chem. Res. Toxicol., 2009, 22, 660-667
- Doi, Y.; Ikeda, A.; Akiyama, M.; Nagano, M.; Shigematsu, T.; Ogawa, T.; Takeya, T.; Nagasaki, T. Intracellular uptake and photodynamic activity of water-soluble [60]- and [70]fullerenes incorporated in liposomes, Chemistry: Eur. J., 2008, 14, 8892-8897
- Rancan, F.; Helmreich, M.; Mölich, A.; Jux, N.; Hirsch, A.; Röder, B.; Böhm, F. Intracellular Uptake and Phototoxicity of 31,32-Didehydrophytochlorin-fullerene Hexaadducts, Photochem. Photobiology, 2007, 83, 1330-1338
- Alvarez, M.; Prucca, C.; Milanesio, M.E.; Durantini, E.N.; Rivarola, V. Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line, Int. J. Biochem. Cell Biol., 2006, 38, 2092–2101
- Mikata, Y.; Takagi, S.; Tanahashi, M.; Ishii, S.; Obata, M.; Miyamoto, Y.; Wakita, K.; Nishisaka, T.; Hirano, T.; Ito, T.; Hoshino, M.; Ohtsuki, C.; Tanihara, M.; Yano, S. Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant [60] fullerenes, Bioorg. Med. Chem. Lett., 2003, 13, 3289–3292
- Otake, E.; Sakuma, S.; Torii, K.; Maeda, A.; Ohi, H.; Yano, S.; Morita, A. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene, Photochem. Photobiol., 2010, 86, 1356–1363
- Horie, M.; Fukuhara, A.; Saito, Y.; Yoshida, Y.; Sato, H.; Ohi, H.; Obata, M.; Mikata, Y.; Yano, S.; Niki, E. Antioxidant action of sugar-pendant C60 fullerenes, Bioorg. Med. Chem. Lett., 2009, 19, 5902–5904
- Lebedev, V.T.; Torok, G.; Melenevskaya, E.Y.; Vinogradova, L.V.; Ivanova, I.N. Poly(Nâ€vinylcaprolactam)â€C60 complexes in aqueous solution, Fullerenes Nanotubes & Carbon Nanostructures, 2008, 16, 603-609
- Qiao, X.; Huang, C.; Ying, Y.; Yang, X.; Liu, Y.; Tian, Q. Involvement of reactive oxygen species and calcium in photo-induced membrane damage in HeLa cells by a bis-methanophosphonate fullerene, J. Photochem. Photobiol. B:, 2010, 98, 193–198
- Palyvoda, K.O.; Grynyuk, I.I.; Prylutsk, S.V.; Samoylenko, A.A.; Drobo, L.B.; Matyshevsk, O.P. Apoptosis photoinduction by C60 fullerene in human leukemic T cells, Ukr. Biochem. J., 2010, 82, 121-127
- Mroz, P.; Xia, Y.; Asanuma, D.; Konopko, A.; Zhiyentayev, T.; Huang, Y.Y.; Sharma, S.K.; Dai, T.; Khan, U.J.; Wharton, T.; Hamblin M.R. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma, Nanomed.: Nanomed. Biol. Med., 2011, 7(6), 965-974
- Xiao, L.; Aoshima, H.; Saitoh, Y.; Miwa, N. Fullerene–polyvinylpyrrolidone clathrate localizes in the cytoplasm to prevent ultraviolet-A ray-induced DNA-fragmentation and activation of the transcriptional factor NF-kappaB, J. Cell. Biochem., 2010, 111, 955-966
- Constantin, C., Neagu, M.; Ion, R.; Gherghiceanu, M.; Stavaru, C. Fullerene-porphyrin nanostructures in photodynamic therapy, Nanomedicine, 2010, 5, 307-317
- Sharma, S.K.; Chiang, L.Y.; Hamblin, M.R. Photodenamic therapy with fullerenes in vivo: reality or a dream?, Nanomedicine, 2011, 6, 1813-1825
- Ni, J.; Q.Y.Wu, Y.G.Li, Z.X.Guo, G.S.Tang, D.Sun, F.Gao, J.M.Cai, Cytotoxic and radiosensitizing effects of nano-C60 on tumor cells in vitro, J. Nanoparticle Res., 2008, 10, 643-651
- Andrievsky, G.; Bruskov, V.I.; Tykhomyrov, A.A.; Gudkov, S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo, Free Radic. Biol. Med., 2009, 47, 786-793
- Huang, S.Q.; Gao, Y.; Li, F.; Cui, B.; Zhao, J.; Dong, F.; Cai, J. Synthesis of fullerene derivative C(60)-Lys and its radio-protection effects in AHH-1 cell, J. Rad. Res. Rad. Proces., 2010, #1, 37-41
- Theriot, A.C.; Casey, R.C.; Moore, V.C.; Mitchell, L.; Reynolds, J.O.; Burgoyne, M.; Partha, R.; Huff, J.L.; Conyers, J.L.; Jeevarajan, A. Dendro[C60]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells, Rad. Envir. Biophys., 2010, 49, 437-445
- Brown, A.P.; Chung, E.J.; Urick, M.E.; Shield, W.P.; Sowers, A.L.; Thetford, A.; Shankavaram, U.T.; Mitchell, J.V.; Citrin, D.E. Evaluation of the fullerene compound DF-1 as a radiation protector, Radiat. Oncol., 2010, 5, 34-43
- Daroczi, B.; Kari, G.; McAleer, M.F.; Wolf, J.C.; Rodeck, U.; Dicker, A.P. In vivo radioprotection by the fullerene nanoparticle DF-1as assessed in a Zebrafish model, Clin. Cancer Res., 2006, 12, 7086-7091
- Foley, S.; Crowley, C.; Smaihi, M.; Bonfils, C.; Erlanger, B.F.; Seta, P.; Larroque, C. Cellular localisation of a water-soluble fullerene derivative, Biochem. Biophys. Res. Commun., 2002, 294, 116–119
- Chirico, F.; Fumelli, C.; Marconi, A.; Tinari, A.; Straface, E.; Malorni, W.; Pellicciari, R.; Pincelli, C. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway, Exp. Dermatol., 2007, 16, 429–436
- Dobrovolskaia, M.A.; McNeil, S.E. Immunological properties of engineered nanomaterials, Nat. Nanotechnol., 2007, 2, 469–478
- Cai, X.; Hao, J.; Zhang, X.; Yu, B.; Ren, J.; Luo, C.; Li, Q.; Huang, Q.; Shi, X.; Li, W.; Liu, J. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction, Toxicol. Appl. Pharmacol., 2010, 243, 27-34
- Injac, R.; Perse, M.; Cerne, M.; Potocnik, N.; Radic, N.; Govedarica, B.; Djordjevic, A.; Cerar, A.; Strukelj, B. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer, Biomaterials, 2009, 30, 1184–1196
- Dordević, A.; Bogdanović, G., Fullerenol—a new nanopharmaceutic? Arch. Oncol., 2008, 16, 42–45
- Takada, H.; Kokubo, K.; Matsubayashi, K.; Oshima, T. Antioxidant activity of supramolecular water-soluble fullerenes evaluated by β-carotene bleaching assay, Biosci. Biotechnol. Biochem., 2006, 70, 3088-3093
- Vávrová, J.; ŘezáÄová, M.; Pejchal, J. Fullerene nanoparticles and their anti-oxidative effects: a comparison to other radioprotective agents, J. Appl. Biomed., 2012, 10, 1-8
- Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S.Y.; Mumper, R.J.; Tropsha, A. Quantitative nanostructure-activity relationship modeling, AcsNano, 2010, 4, 5703-5712
- Kayat, J.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Pulmonary toxicity of carbon nanotubes: a systematic report, Nanomed. Nanotechnol. Biol. Med., 2011, 7, 40-49
- Miller, J.; Lam, M.; Lebovitz, R. Derivatized Fullerenes: A New Class of Therapeutics and Imaging Agents. Nanotech. L. & Bus. http://heinonline.org/, 423, 2007
- Kepley, C. Use of fullerenes for the treatment of mast cell and basophil-mediated disease, US Patent 7947262, 2006
- Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: Their potential toxicity, waste and environmental management, Waste Management, 2009, 29, 2587-2595
- Mraz, S.J. Nanowaste: the next big threat? Machine Design, 2005, 77, 46–53
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles, Small, 2008, 4, 26–49
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.